On the matrix negative Pell equation
Aleksander Grytczuk ; Izabela Kurzydło
Discussiones Mathematicae - General Algebra and Applications, Tome 29 (2009), p. 35-45 / Harvested from The Polish Digital Mathematics Library

Let N be a set of natural numbers and Z be a set of integers. Let M₂(Z) denotes the set of all 2x2 matrices with integer entries. We give necessary and suficient conditions for solvability of the matrix negative Pell equation (P) X² - dY² = -I with d ∈ N for nonsingular X,Y belonging to M₂(Z) and his generalization (Pn) i=1nXi-di=1nY²i=-I with d ∈ N for nonsingular Xi,YiM(Z), i=1,...,n.

Publié le : 2009-01-01
EUDML-ID : urn:eudml:doc:276938
@article{bwmeta1.element.bwnjournal-article-doi-10_7151_dmgaa_1150,
     author = {Aleksander Grytczuk and Izabela Kurzyd\l o},
     title = {On the matrix negative Pell equation},
     journal = {Discussiones Mathematicae - General Algebra and Applications},
     volume = {29},
     year = {2009},
     pages = {35-45},
     zbl = {1196.15013},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmgaa_1150}
}
Aleksander Grytczuk; Izabela Kurzydło. On the matrix negative Pell equation. Discussiones Mathematicae - General Algebra and Applications, Tome 29 (2009) pp. 35-45. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmgaa_1150/

[000] [1] Z. Cao and A. Grytczuk, Fermat's type equations in the set of 2x2 integral matrices, Tsukuba J. Math. 22 (1998), 637-643. | Zbl 0940.11016

[001] [2] R.Z. Domiaty, Solutions of x⁴+y⁴=z⁴ in 2x2 integral matrices, Amer. Math. Monthly (1966) 73, 631.

[002] [3] A. Grytczuk, Fermat's equation in the set of matrices and special functions, Studia Univ. Babes-Bolyai, Mathematica 4 (1997), 49-55 .

[003] [4] A. Grytczuk, On a conjecture about the equation Amx+Amy=Amz, Acta Acad. Paed. Agriensis, Sectio Math. 25 (1998), 61-70. | Zbl 0923.11043

[004] [5] A. Grytczuk and J. Grytczuk, Ljunggren’s trinomials and matrix equation Ax+Ay=Az, Tsukuba J. Math. 2 (2002), 229-235. | Zbl 1020.11019

[005] [6] A. Grytczuk and K. Grytczuk, Functional recurences, 115-121 in: Applications of Fibonacci Numbers, Ed. E. Bergum et als, by Kluwer Academic Publishers 1990. | Zbl 0725.34002

[006] [7] A. Grytczuk, F. Luca and M. Wójtowicz, The negative Pell equation and Pythagorean triples, Proc. Japan Acad. 76 (2000), 91-94. | Zbl 0971.11013

[007] [8] A. Khazanov, Fermat's equation in matrices, Serdica Math. J. 21 (1995), 19-40.

[008] [9] I. Kurzydło, Explicit form on a GLW criterion for solvability of the negative Pell equation - Submitted.

[009] [10] M. Le and C. Li, On Fermat's equation in integral 2x2 matrices, Period. Math. Hung. 31 (1995), 219-222. | Zbl 0849.11035

[010] [11] Z. Patay and A. Szakacs, On Fermat's problem in matrix rings and groups, Publ. Math. Debrecen 61 (3-4) (2002), 487-494. | Zbl 1006.11012

[011] [12] H. Qin, Fermat’s problem and Goldbach problem over Mn(Z), Linear Algebra App., 236 (1996), 131-135.

[012] [13] P. Ribenboim, 13 Lectures on Fermat's Last Theorem (New York: Springer-Verlag) 1979. | Zbl 0456.10006

[013] [14] N. Vaserstein, Non-commutative Number Theory, Contemp. Math. 83 (1989), 445-449.