Horizontal sums of basic algebras
Ivan Chajda
Discussiones Mathematicae - General Algebra and Applications, Tome 29 (2009), p. 21-33 / Harvested from The Polish Digital Mathematics Library

The variety of basic algebras is closed under formation of horizontal sums. We characterize when a given basic algebra is a horizontal sum of chains, MV-algebras or Boolean algebras.

Publié le : 2009-01-01
EUDML-ID : urn:eudml:doc:276930
@article{bwmeta1.element.bwnjournal-article-doi-10_7151_dmgaa_1149,
     author = {Ivan Chajda},
     title = {Horizontal sums of basic algebras},
     journal = {Discussiones Mathematicae - General Algebra and Applications},
     volume = {29},
     year = {2009},
     pages = {21-33},
     zbl = {1194.06005},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmgaa_1149}
}
Ivan Chajda. Horizontal sums of basic algebras. Discussiones Mathematicae - General Algebra and Applications, Tome 29 (2009) pp. 21-33. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmgaa_1149/

[000] [1] I. Chajda, Lattices and semilattices having an antitone involution in every upper interval, Comment. Math. Univ. Carolinae 44 (2003), 577-585. | Zbl 1101.06003

[001] [2] I. Chajda, R. Halaš and J. Kühr, Semilattice Structures, Heldermann Verlag, Lemgo (Germany), 2007, 228pp, ISBN 978-3-88538-230-0.

[002] [3] I. Chajda, R. Halaš and J. Kühr, Many-valued quantum algebras, Algebra Universalis 60 (2009), 63-90. %DOI 10.1007/s00012-008-2086-9. | Zbl 1219.06013

[003] [4] I. Chajda and H. Länger, A characterization of horizontal sums of Boolean rings, Contributions to General Algebra 18, Proceedings of the conference Arbeitstagung Allgemeine Algebra 73, Klagenfurt 2007, Verlag J. Heyn, Klagenfurt (2007), 23-30. | Zbl 1148.06009

[004] [5] A. Dvurečenskij and S. Pulmannová, New Trends in Quantum Structures, Kluwer Acad. Publ., Dordrecht 2000. | Zbl 0987.81005

[005] [6] D.J. Foulis and M.K. Bennett, Effect algebras and unsharp quantum logic, Found. Phys. 24 (1994), 1325-1346.

[006] [7] Z. Riečanová, Generalization of blocks for D-lattices and lattice-ordered effect algebras, Intern. J. Theor. Phys. 39 (2000), 231-237. | Zbl 0968.81003

[007] [8] N. Vaserstein, Non-commutative number theory, Contemp. Math. 83 (1989), 445-449