The variety of basic algebras is closed under formation of horizontal sums. We characterize when a given basic algebra is a horizontal sum of chains, MV-algebras or Boolean algebras.
@article{bwmeta1.element.bwnjournal-article-doi-10_7151_dmgaa_1149, author = {Ivan Chajda}, title = {Horizontal sums of basic algebras}, journal = {Discussiones Mathematicae - General Algebra and Applications}, volume = {29}, year = {2009}, pages = {21-33}, zbl = {1194.06005}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmgaa_1149} }
Ivan Chajda. Horizontal sums of basic algebras. Discussiones Mathematicae - General Algebra and Applications, Tome 29 (2009) pp. 21-33. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmgaa_1149/
[000] [1] I. Chajda, Lattices and semilattices having an antitone involution in every upper interval, Comment. Math. Univ. Carolinae 44 (2003), 577-585. | Zbl 1101.06003
[001] [2] I. Chajda, R. Halaš and J. Kühr, Semilattice Structures, Heldermann Verlag, Lemgo (Germany), 2007, 228pp, ISBN 978-3-88538-230-0.
[002] [3] I. Chajda, R. Halaš and J. Kühr, Many-valued quantum algebras, Algebra Universalis 60 (2009), 63-90. %DOI 10.1007/s00012-008-2086-9. | Zbl 1219.06013
[003] [4] I. Chajda and H. Länger, A characterization of horizontal sums of Boolean rings, Contributions to General Algebra 18, Proceedings of the conference Arbeitstagung Allgemeine Algebra 73, Klagenfurt 2007, Verlag J. Heyn, Klagenfurt (2007), 23-30. | Zbl 1148.06009
[004] [5] A. Dvurečenskij and S. Pulmannová, New Trends in Quantum Structures, Kluwer Acad. Publ., Dordrecht 2000. | Zbl 0987.81005
[005] [6] D.J. Foulis and M.K. Bennett, Effect algebras and unsharp quantum logic, Found. Phys. 24 (1994), 1325-1346.
[006] [7] Z. Riečanová, Generalization of blocks for D-lattices and lattice-ordered effect algebras, Intern. J. Theor. Phys. 39 (2000), 231-237. | Zbl 0968.81003
[007] [8] N. Vaserstein, Non-commutative number theory, Contemp. Math. 83 (1989), 445-449