Remarks on pseudo MV-algebras
Ivan Chajda ; Miroslav Kolařík
Discussiones Mathematicae - General Algebra and Applications, Tome 29 (2009), p. 5-19 / Harvested from The Polish Digital Mathematics Library

Pseudo MV-algebras (see e.g., [4, 6, 8]) are non-commutative extension of MV-algebras. We show that every pseudo MV-algebra is isomorphic to the algebra of action functions where the binary operation is function composition, zero is x ∧ y and unit is x. Then we define the so-called difference functions in pseudo MV-algebras and show how a pseudo MV-algebra can be reconstructed by them.

Publié le : 2009-01-01
EUDML-ID : urn:eudml:doc:276918
@article{bwmeta1.element.bwnjournal-article-doi-10_7151_dmgaa_1148,
     author = {Ivan Chajda and Miroslav Kola\v r\'\i k},
     title = {Remarks on pseudo MV-algebras},
     journal = {Discussiones Mathematicae - General Algebra and Applications},
     volume = {29},
     year = {2009},
     pages = {5-19},
     zbl = {1194.06006},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmgaa_1148}
}
Ivan Chajda; Miroslav Kolařík. Remarks on pseudo MV-algebras. Discussiones Mathematicae - General Algebra and Applications, Tome 29 (2009) pp. 5-19. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmgaa_1148/

[000] [1] S.L. Bloom, Z. Ésik and E. Manes, A Cayley theorem for Boolean algebras, Amer. Math. Monthly 97 (1990), 831-833. | Zbl 0749.08002

[001] [2] I. Chajda, A representation of the algebra of quasiordered logic by binary functions, Demonstratio Mathem. 27 (1994), 601-607. | Zbl 0826.06004

[002] [4] I. Chajda and H. Länger, Action algebras, Italian J. of Pure Appl. Mathem., submitted. | Zbl 1266.06010

[003] [5] I. Chajda and J. Kühr, Pseudo MV-algebras and meet-semilattices with sectionally antitone permutations, Math. Slovaca 56 (2006), 275-288. | Zbl 1141.06002

[004] [6] A. Dvurečenskij, Pseudo MV-algebras are intervals in l-groups, J. Aust. Math. Soc. 72 (3) (2002), 427-445. | Zbl 1027.06014

[005] [7] N. Galatos, P. Jipsen, T. Kowalski and H. Ono, Residuated Lattices, An Algebraic Glimpse at Substructural Logics, Elsevier 2007. | Zbl 1171.03001

[006] [8] G. Georgescu and A. Iorgelescu, Pseudo MV-algebras, Multiple Valued Log. 6 (2001), 95-135.

[007] [9] A.M.W Glass and W.C. Holland, Lattice-Ordered Groups, Kluwer Acad. Publ., Dordrecht-Boston-London 1989. | Zbl 0705.06001

[008] [10] P. Jipsen and C. Tsinakis, A survey of Residuated Lattices, Ordered Agebraic Structures (Martinez J., editor), Kluwer Academic Publishers, Dordrecht, 2002, 19-56. | Zbl 1070.06005

[009] [11] J. Kühr and F. Švrček, Operators on unital l-groups, preprint, 2007.

[010] [12] J. Rachůnek, A non-commutative generalization of MV-algebras, Czechoslovak Math. J. 52 (2002), 255-273. | Zbl 1012.06012