Positive splittings of matrices and their nonnegative Moore-Penrose inverses
Tamminana Kurmayya ; Koratti C. Sivakumar
Discussiones Mathematicae - General Algebra and Applications, Tome 28 (2008), p. 227-235 / Harvested from The Polish Digital Mathematics Library

In this short note we study necessary and sufficient conditions for the nonnegativity of the Moore-Penrose inverse of a real matrix in terms of certain spectral property shared by all positive splittings of the given matrix.

Publié le : 2008-01-01
EUDML-ID : urn:eudml:doc:276915
@article{bwmeta1.element.bwnjournal-article-doi-10_7151_dmgaa_1145,
     author = {Tamminana Kurmayya and Koratti C. Sivakumar},
     title = {Positive splittings of matrices and their nonnegative Moore-Penrose inverses},
     journal = {Discussiones Mathematicae - General Algebra and Applications},
     volume = {28},
     year = {2008},
     pages = {227-235},
     zbl = {1193.15001},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmgaa_1145}
}
Tamminana Kurmayya; Koratti C. Sivakumar. Positive splittings of matrices and their nonnegative Moore-Penrose inverses. Discussiones Mathematicae - General Algebra and Applications, Tome 28 (2008) pp. 227-235. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmgaa_1145/

[000] [1] A. Ben-Israel and T.N.E. Greville, Generalized Inverses: Theory and Applications, 2nd edition, Springer Verlag, New York 2003. | Zbl 1026.15004

[001] [2] A. Berman and R.J. Plemmons, Monotonocity and the generalized inverse, SIAM J. Appl. Math. 22 (1972), 155-161. | Zbl 0255.15005

[002] [3] A. Berman and R.J. Plemmons, Nonnegative Matrices in the Mathematical Sciences, Classics in Applied Mathematics, SIAM 1994. | Zbl 0815.15016

[003] [4] L. Collatz, Functional Analysis and Numerical Mathematics, Academic, New York 1966.

[004] [5] M.I. Gil, On positive invertibility of matrices, Positivity 2 (1998), 65-170. | Zbl 0908.15003

[005] [6] M.I. Gil, On invertibility and positive invertibility of matrices, Lin. Alg. Appl. 327 (2001), 95-104. | Zbl 0978.15004

[006] [7] M.A. Krasnosel'skij, J.A. Lifshits and A.V. Sobolev, Positive linear systems, Heldermann Verlag, Berlin 1989.

[007] [8] T. Kurmayya, Nonnegative Moore-Penrose inverses of operators between Hilbert spaces, Ph.D. Dissertation, Indian Institute of Technology Madras, Submitted, December 2007. | Zbl 1122.15007

[008] [9] T. Kurmayya and K.C. Sivakumar, Nonnegative Moore-Penrose inverses of operators over Hilbert spaces, Positivity, Online First, DOI 10.1007/s11117-007-2173-8. | Zbl 1169.47003

[009] [10] O.L. Mangasarian, Characterizations of real matrices of monotone kind, SIAM. Rev. 10 (1968), 439-441. | Zbl 0179.05102

[010] [11] J.E. Peris, A new characterization of inverse-positive matrices, Lin. Alg. Appl. 154-156 (1991), 45-58.

[011] [12] M. Weber, On the Positiveness of the Inverse Operator, Math. Nachr. 163 (1993), 14-5-149. Erratum, Math. Nachr. 171 (1995), 325-326.