Let S = {a,b,c,...} and Γ = {α,β,γ,...} be two nonempty sets. S is called a Γ -semigroup if aαb ∈ S, for all α ∈ Γ and a,b ∈ S and (aαb)βc = aα(bβc), for all a,b,c ∈ S and for all α,β ∈ Γ. In this paper we study the semidirect product of a semigroup and a Γ-semigroup. We also introduce the notion of wreath product of a semigroup and a Γ-semigroup and investigate some interesting properties of this product.
@article{bwmeta1.element.bwnjournal-article-doi-10_7151_dmgaa_1141, author = {Mridul K. Sen and Sumanta Chattopadhyay}, title = {Wreath product of a semigroup and a $\Gamma$-semigroup}, journal = {Discussiones Mathematicae - General Algebra and Applications}, volume = {28}, year = {2008}, pages = {161-178}, zbl = {1195.20067}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmgaa_1141} }
Mridul K. Sen; Sumanta Chattopadhyay. Wreath product of a semigroup and a Γ-semigroup. Discussiones Mathematicae - General Algebra and Applications, Tome 28 (2008) pp. 161-178. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmgaa_1141/
[000] [1] S. Chattopadhyay, Right Inverse Γ-semigroup, Bull. Cal. Math. Soc. 93 (2001), 435-442. | Zbl 1002.20042
[001] [2] S. Chattopadhyay, Right Orthodox Γ-semigroup, Southeast Asian Bull. of Math 29 (2005), 23-30. | Zbl 1066.20066
[002] [3] J.M. Howie, An introduction to semigroup theory, Academic Press 1976.
[003] [4] W.R. Nico, On the regularity of semidirect products, J. Algebra 80 (1983), 29-36. | Zbl 0512.20043
[004] [5] T. Saito, Orthodox semidirect product and wreath products of semigroups, Semigroup Forum 38 (1989), 347-354. | Zbl 0669.20049
[005] [6] M.K. Sen and S. Chattopadhyay, Semidirect Product of a Semigroup and a Γ-semigroup, East-West J. of Math. 6 (2) (2004), 131-138. | Zbl 1098.20052
[006] [7] M.K. Sen and N.K Saha, On Γ-semigroup I, Bull. Cal. Math. Soc. 78 (1986), 181-186.
[007] [8] P.S. Venkatesan, Right(left) inverse semigroup, J. of Algebra (1974), 209-217. | Zbl 0301.20058
[008] [9] R. Zhang, A Note on Orthodox Semidirect Products and Wreath Products of Monoids, Semigroup Forum 58 (1999), 262-266. | Zbl 0926.20042