On some properties of Chebyshev polynomials
Hacène Belbachir ; Farid Bencherif
Discussiones Mathematicae - General Algebra and Applications, Tome 28 (2008), p. 121-133 / Harvested from The Polish Digital Mathematics Library

Letting Tn (resp. Un) be the n-th Chebyshev polynomials of the first (resp. second) kind, we prove that the sequences (XkTn-k)k and (XkUn-k)k for n - 2⎣n/2⎦ ≤ k ≤ n - ⎣n/2⎦ are two basis of the ℚ-vectorial space n[X] formed by the polynomials of ℚ[X] having the same parity as n and of degree ≤ n. Also Tn and Un admit remarkableness integer coordinates on each of the two basis.

Publié le : 2008-01-01
EUDML-ID : urn:eudml:doc:276945
@article{bwmeta1.element.bwnjournal-article-doi-10_7151_dmgaa_1138,
     author = {Hac\`ene Belbachir and Farid Bencherif},
     title = {On some properties of Chebyshev polynomials},
     journal = {Discussiones Mathematicae - General Algebra and Applications},
     volume = {28},
     year = {2008},
     pages = {121-133},
     zbl = {1211.11036},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmgaa_1138}
}
Hacène Belbachir; Farid Bencherif. On some properties of Chebyshev polynomials. Discussiones Mathematicae - General Algebra and Applications, Tome 28 (2008) pp. 121-133. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmgaa_1138/

[000] [1] H. Belbachir and F. Bencherif, Linear recurrent sequences and powers of a square matrix, Integers 6 (A12) (2006), 1-17. | Zbl 1122.11008

[001] [2] E. Lucas, Théorie des Nombres, Ghautier-Villars, Paris 1891.

[002] [3] T.J. Rivlin, Chebyshev Polynomials: From Approximation Theory to Algebra and Number Theory, second edition, Wiley Interscience 1990. | Zbl 0734.41029