Letting (resp. ) be the n-th Chebyshev polynomials of the first (resp. second) kind, we prove that the sequences and for n - 2⎣n/2⎦ ≤ k ≤ n - ⎣n/2⎦ are two basis of the ℚ-vectorial space formed by the polynomials of ℚ[X] having the same parity as n and of degree ≤ n. Also and admit remarkableness integer coordinates on each of the two basis.
@article{bwmeta1.element.bwnjournal-article-doi-10_7151_dmgaa_1138, author = {Hac\`ene Belbachir and Farid Bencherif}, title = {On some properties of Chebyshev polynomials}, journal = {Discussiones Mathematicae - General Algebra and Applications}, volume = {28}, year = {2008}, pages = {121-133}, zbl = {1211.11036}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmgaa_1138} }
Hacène Belbachir; Farid Bencherif. On some properties of Chebyshev polynomials. Discussiones Mathematicae - General Algebra and Applications, Tome 28 (2008) pp. 121-133. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmgaa_1138/
[000] [1] H. Belbachir and F. Bencherif, Linear recurrent sequences and powers of a square matrix, Integers 6 (A12) (2006), 1-17. | Zbl 1122.11008
[001] [2] E. Lucas, Théorie des Nombres, Ghautier-Villars, Paris 1891.
[002] [3] T.J. Rivlin, Chebyshev Polynomials: From Approximation Theory to Algebra and Number Theory, second edition, Wiley Interscience 1990. | Zbl 0734.41029