Klaus Denecke ; Jörg Koppitz ; Nittiya Pabhapote
Discussiones Mathematicae - General Algebra and Applications, Tome 28 (2008), p. 91-119 / Harvested from The Polish Digital Mathematics Library

A regular hypersubstitution is a mapping which takes every ni-ary operation symbol to an ni-ary term. A variety is called regular-solid if it contains all algebras derived by regular hypersubstitutions. We determine the greatest regular-solid variety of semigroups. This result will be used to give a new proof for the equational description of the greatest solid variety of semigroups. We show that every variety of semigroups which is finitely based by hyperidentities is also finitely based by identities.

Publié le : 2008-01-01
EUDML-ID : urn:eudml:doc:276942
@article{bwmeta1.element.bwnjournal-article-doi-10_7151_dmgaa_1137,
     author = {Klaus Denecke and J\"org Koppitz and Nittiya Pabhapote},
     title = {<title-group xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"><article-title/></title-group>},
     journal = {Discussiones Mathematicae - General Algebra and Applications},
     volume = {28},
     year = {2008},
     pages = {91-119},
     zbl = {1158.20030},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmgaa_1137}
}
Klaus Denecke; Jörg Koppitz; Nittiya Pabhapote. . Discussiones Mathematicae - General Algebra and Applications, Tome 28 (2008) pp. 91-119. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmgaa_1137/

[000] [1] Sr. Arworn, Groupoids of Hypersubstitutions and G-solid Varieties, Shaker-Verlag, Aachen 2000.

[001] [2] K. Denecke and S.L. Wismath, Hyperidentities and Clones, Gordon and Breach Science Publishers 2000. | Zbl 0960.08001

[002] [3] O.C. Kharlampovitsch and M.V. Sapir, Algorithmic problems in varieties, Int. J. Algebra and Computation 5 (1995), 379-602. | Zbl 0837.08002

[003] [4] J. Koppitz and K. Denecke, M-solid Varieties of Algebras, Springer 2006. | Zbl 1094.08001

[004] [5] P. Perkins, Bases for equational theories of semigroups, J. Algebra 11 (1968), 298-314. | Zbl 0186.03401

[005] [6] J. Płonka, Proper and inner hypersubstitutions of varieties, pp. 421-436 in: 'Proceedings of the International Conference Summer School on General Algebra and Ordered Sets', Olomouc 1994. | Zbl 0828.08003

[006] [7] L. Polák, On Hyperassociativity, Algebra Universalis 36 (3) (1996), 363-378.

[007] [8] L. Polák, All solid varieties of semigroups, J. of Algebra 2 (1999), 421-436. | Zbl 0935.20050

[008] [9] D. Schweigert, Hyperidentities, pp. 405-506 in: Algebras and Orders, Kluwer 1993.