We study commutative directoids with a greatest element, which can be equipped with antitone bijections in every principal filter. These can be axiomatized as algebras with two binary operations satisfying four identities. A minimal subvariety of this variety is described.
@article{bwmeta1.element.bwnjournal-article-doi-10_7151_dmgaa_1136, author = {Ivan Chajda and Miroslav Kola\v r\'\i k and S\'andor Radeleczki}, title = {Commutative directoids with sectionally antitone bijections}, journal = {Discussiones Mathematicae - General Algebra and Applications}, volume = {28}, year = {2008}, pages = {77-89}, zbl = {1167.06003}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmgaa_1136} }
Ivan Chajda; Miroslav Kolařík; Sándor Radeleczki. Commutative directoids with sectionally antitone bijections. Discussiones Mathematicae - General Algebra and Applications, Tome 28 (2008) pp. 77-89. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmgaa_1136/
[000] [1] J.C. Abbott, Semi-Boolean algebras, Matem. Vestnik 4 (1967), 177-198. | Zbl 0153.02704
[001] [2] I. Chajda, Lattices and semilattices having an antitone bijection in any upper interval, Comment. Math. Univ. Carolinae 44 (2003), 577-585. | Zbl 1101.06003
[002] [3] I. Chajda, G. Eigenthaler and H. Länger, Congruence Classes in Universal Algebra, Heldermann Verlag, Lemgo (Germany), 2003, ISBN 3-88538-226-1. | Zbl 1014.08001
[003] [4] I. Chajda and M. Kolařík, Directoids with sectionally antitone involutions and skew MV-algebras, Math. Bohemica 132 (2007), 407-422. | Zbl 1174.06314
[004] [5] I. Chajda and R. Radeleczki, Semilattices with sectionally antitone bijections, Novi Sad J. Math. 35 (2005), 93-101. | Zbl 1274.06012
[005] [6] B. Csákány, Characterization of regular varieties, Acta Sci. Math. Szeged 31 (1970), 187-189.
[006] [7] J. Hagemann and A. Mitschke, On n-permutable congruences, Algebra Universalis 3 (1973), 8-12.
[007] [8] J. Ježek and R. Quackenbush, Directoids: algebraic models of up-directed sets, Algebra Universalis 27 (1990), 49-69. | Zbl 0699.08002
[008] [9] V.M. Kopytov and Z.I. Dimitrov, On directed groups, Siberian Math. J. 30 (1989), 895-902. (Russian original: Sibirsk. Mat. Zh. 30 (6) (1988), 78-86.)
[009] [10] S. Radeleczki, The congruence lattice of implication algebras, Math. Pannonica 3 (1992), 115-123.
[010] [11] V. Snášel, λ-lattices, Math. Bohemica 122 (1997), 267-272.