Commutative directoids with sectionally antitone bijections
Ivan Chajda ; Miroslav Kolařík ; Sándor Radeleczki
Discussiones Mathematicae - General Algebra and Applications, Tome 28 (2008), p. 77-89 / Harvested from The Polish Digital Mathematics Library

We study commutative directoids with a greatest element, which can be equipped with antitone bijections in every principal filter. These can be axiomatized as algebras with two binary operations satisfying four identities. A minimal subvariety of this variety is described.

Publié le : 2008-01-01
EUDML-ID : urn:eudml:doc:276838
@article{bwmeta1.element.bwnjournal-article-doi-10_7151_dmgaa_1136,
     author = {Ivan Chajda and Miroslav Kola\v r\'\i k and S\'andor Radeleczki},
     title = {Commutative directoids with sectionally antitone bijections},
     journal = {Discussiones Mathematicae - General Algebra and Applications},
     volume = {28},
     year = {2008},
     pages = {77-89},
     zbl = {1167.06003},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmgaa_1136}
}
Ivan Chajda; Miroslav Kolařík; Sándor Radeleczki. Commutative directoids with sectionally antitone bijections. Discussiones Mathematicae - General Algebra and Applications, Tome 28 (2008) pp. 77-89. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmgaa_1136/

[000] [1] J.C. Abbott, Semi-Boolean algebras, Matem. Vestnik 4 (1967), 177-198. | Zbl 0153.02704

[001] [2] I. Chajda, Lattices and semilattices having an antitone bijection in any upper interval, Comment. Math. Univ. Carolinae 44 (2003), 577-585. | Zbl 1101.06003

[002] [3] I. Chajda, G. Eigenthaler and H. Länger, Congruence Classes in Universal Algebra, Heldermann Verlag, Lemgo (Germany), 2003, ISBN 3-88538-226-1. | Zbl 1014.08001

[003] [4] I. Chajda and M. Kolařík, Directoids with sectionally antitone involutions and skew MV-algebras, Math. Bohemica 132 (2007), 407-422. | Zbl 1174.06314

[004] [5] I. Chajda and R. Radeleczki, Semilattices with sectionally antitone bijections, Novi Sad J. Math. 35 (2005), 93-101. | Zbl 1274.06012

[005] [6] B. Csákány, Characterization of regular varieties, Acta Sci. Math. Szeged 31 (1970), 187-189.

[006] [7] J. Hagemann and A. Mitschke, On n-permutable congruences, Algebra Universalis 3 (1973), 8-12.

[007] [8] J. Ježek and R. Quackenbush, Directoids: algebraic models of up-directed sets, Algebra Universalis 27 (1990), 49-69. | Zbl 0699.08002

[008] [9] V.M. Kopytov and Z.I. Dimitrov, On directed groups, Siberian Math. J. 30 (1989), 895-902. (Russian original: Sibirsk. Mat. Zh. 30 (6) (1988), 78-86.)

[009] [10] S. Radeleczki, The congruence lattice of implication algebras, Math. Pannonica 3 (1992), 115-123.

[010] [11] V. Snášel, λ-lattices, Math. Bohemica 122 (1997), 267-272.