Fuzzy ideals of pseudo MV-algebras are investigated. The homomorphic properties of fuzzy prime ideals are given. A one-to-one correspondence between the set of maximal ideals and the set of fuzzy maximal ideals μ satisfying μ(0) = 1 and μ(1) = 0 is obtained.
@article{bwmeta1.element.bwnjournal-article-doi-10_7151_dmgaa_1135, author = {Grzegorz Dymek}, title = {On fuzzy ideals of pseudo MV-algebras}, journal = {Discussiones Mathematicae - General Algebra and Applications}, volume = {28}, year = {2008}, pages = {63-75}, zbl = {1157.06006}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmgaa_1135} }
Grzegorz Dymek. On fuzzy ideals of pseudo MV-algebras. Discussiones Mathematicae - General Algebra and Applications, Tome 28 (2008) pp. 63-75. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmgaa_1135/
[000] [1] C.C. Chang, Algebraic analysis of many valued logics, Trans. Amer. Math. Soc. 88 (1958), 467-490. | Zbl 0084.00704
[001] [2] A. Dvurečenskij, States on pseudo MV-algebras, Studia Logica 68 (2001), 301-327. | Zbl 0999.06011
[002] [3] G. Dymek, Fuzzy maximal ideals of pseudo MV-algebras, Comment. Math. 47 (2007), 31-46. | Zbl 1177.06015
[003] [4] G. Dymek, Fuzzy prime ideals of pseudo-MV algebras, Soft Comput. 12 (2008), 365-372. | Zbl 1132.06006
[004] [5] G. Georgescu and A. Iorgulescu, Pseudo MV-algebras: a non-commutative extension of MV-algebras, pp. 961-968 in: 'Proceedings of the Fourth International Symposium on Economic Informatics', Bucharest, Romania, May 1999. | Zbl 0985.06007
[005] [6] G. Georgescu and A. Iorgulescu, Pseudo MV-algebras, Multi. Val. Logic 6 (2001), 95-135.
[006] [7] C.S. Hoo and S. Sessa, Fuzzy maximal ideals of BCI and MV-algebras, Inform. Sci. 80 (1994), 299-309. | Zbl 0809.06012
[007] [8] Y.B. Jun and A. Walendziak, Fuzzy ideals of pseudo MV-algebras, Inter. Rev. Fuzzy Math.~ 1 (2006), 21-31.
[008] [9] J. Rachůnek, A non-commutative generalization of MV-algebras, Czechoslovak Math. J. 52 (2002), 255-273. | Zbl 1012.06012
[009] [10] L.A. Zadeh, Fuzzy sets, Inform. Control 8 (1965), 338-353. | Zbl 0139.24606