Distributive differential modals
Karolina Ślusarska
Discussiones Mathematicae - General Algebra and Applications, Tome 28 (2008), p. 29-47 / Harvested from The Polish Digital Mathematics Library

A differential modal is an algebra with two binary operations such that one of the reducts is a differential groupoid and the other is a semilattice, and with the groupoid operation distributing over the semilattice operation. The aim of this paper is to show that the varieties of entropic and distributive differential modals coincide, and to describe the lattice of varieties of entropic differential modals.

Publié le : 2008-01-01
EUDML-ID : urn:eudml:doc:276857
@article{bwmeta1.element.bwnjournal-article-doi-10_7151_dmgaa_1133,
     author = {Karolina \'Slusarska},
     title = {Distributive differential modals},
     journal = {Discussiones Mathematicae - General Algebra and Applications},
     volume = {28},
     year = {2008},
     pages = {29-47},
     zbl = {1155.08002},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmgaa_1133}
}
Karolina Ślusarska. Distributive differential modals. Discussiones Mathematicae - General Algebra and Applications, Tome 28 (2008) pp. 29-47. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmgaa_1133/

[000] [1] K.A. Kearnes, Semilattice modes I: the associated semiring, Algebra Universalis 34 (1995), 220-272. | Zbl 0848.08005

[001] [2] A. Romanowska, On some representations of groupoid modes satisfying the reduction law, Demonstratio Mathematica 21 (1988), 943-960. | Zbl 0677.20057

[002] [3] A. Romanowska and B. Roszkowska, On some groupoid modes, Demonstratio Mathematica 20 (1987), 277-290. | Zbl 0669.08005

[003] [4] A. Romanowska and B. Roszkowska, Representations of n-cyclic groupoids, Algebra Universalis 26 (1989), 7-15. | Zbl 0669.20058

[004] [5] A.B. Romanowska and J.D.H. Smith, Modes, World Scientific, Singapore 2002.

[005] [6] A.B. Romanowska and J.D.H. Smith, Modal Theory - an Algebraic Approach to Order, Geometry and Convexity, Heldermann Verlag, Berlin 1985. | Zbl 0553.08001

[006] [7] A.B. Romanowska and J.D.H. Smith, Differential groupoids, Contribution to General Algebra 7 (1991), 283-290. | Zbl 0744.20055