Interior and closure operators on bounded commutative residuated l-monoids
Jiří Rachůnek ; Filip Švrček
Discussiones Mathematicae - General Algebra and Applications, Tome 28 (2008), p. 11-27 / Harvested from The Polish Digital Mathematics Library

Topological Boolean algebras are generalizations of topological spaces defined by means of topological closure and interior operators, respectively. The authors in [14] generalized topological Boolean algebras to closure and interior operators of MV-algebras which are an algebraic counterpart of the Łukasiewicz infinite valued logic. In the paper, these kinds of operators are extended (and investigated) to the wide class of bounded commutative Rl-monoids that contains e.g. the classes of BL-algebras (i.e., algebras of the Hájek's basic fuzzy logic) and Heyting algebras as proper subclasses.

Publié le : 2008-01-01
EUDML-ID : urn:eudml:doc:276908
@article{bwmeta1.element.bwnjournal-article-doi-10_7151_dmgaa_1132,
     author = {Ji\v r\'\i\ Rach\r unek and Filip \v Svr\v cek},
     title = {Interior and closure operators on bounded commutative residuated l-monoids},
     journal = {Discussiones Mathematicae - General Algebra and Applications},
     volume = {28},
     year = {2008},
     pages = {11-27},
     zbl = {1227.06014},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmgaa_1132}
}
Jiří Rachůnek; Filip Švrček. Interior and closure operators on bounded commutative residuated l-monoids. Discussiones Mathematicae - General Algebra and Applications, Tome 28 (2008) pp. 11-27. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmgaa_1132/

[000] [1] P. Bahls, J. Cole, N. Galatos, P. Jipsen and C. Tsinakis, Cancellative residuated lattices, Alg. Univ. 50 (2003), 83-106. | Zbl 1092.06012

[001] [2] K. Blount and C. Tsinakis, The structure of residuated lattices, Intern. J. Alg. Comp. 13 (2003), 437-461. | Zbl 1048.06010

[002] [3] R.O.L. Cignoli, I.M.L. D'Ottaviano and D. Mundici, Algebraic Foundations of Many-valued Reasoning, Kluwer Acad. Publ., Dordrecht-Boston-London 2000. | Zbl 0937.06009

[003] [4]A. Dvurečenskij and S. Pulmannová, New Trends in Quantum Structures, Kluwer Acad. Publ., Dordrecht-Boston-London 2000. | Zbl 0987.81005

[004] [5] A. Dvurečenskij and J. Rachůnek, Bounded commutative residuated l-monoids with general comparability and states, Soft Comput. 10 (2006), 212-218. | Zbl 1096.06008

[005] [6] P. Hájek, Metamathematics of Fuzzy Logic, Kluwer, Amsterdam 1998. | Zbl 0937.03030

[006] [7] P. Jipsen and C. Tsinakis, A survey of residuated lattices, Ordered algebraic structures (ed. J. Martinez), Kluwer Acad. Publ. Dordrecht (2002), 19-56. | Zbl 1070.06005

[007] [8] J. Kühr, Dually Residuated Lattice Ordered Monoids, Ph. D. Thesis, Palacký Univ., Olomouc 2003. | Zbl 1066.06008

[008] [9] J. Rachůnek, DRl-semigroups and MV-algebras, Czechoslovak Math. J. 48 (1998), 365-372. | Zbl 0952.06014

[009] [10] J. Rachůnek, MV-algebras are categorically equivalent to a class of DRl1(i)-semigroups, Math. Bohemica 123 (1998), 437-441. | Zbl 0934.06014

[010] [11] J. Rachůnek, A duality between algebras of basic logic and bounded representable DRl-monoids, Math. Bohemica 126 (2001), 561-569. | Zbl 0979.03049

[011] [12] J. Rachůnek and V. Slezák, Negation in bounded commutative DRl-monoids, Czechoslovak Math. J. 56 (2006), 755-763. | Zbl 1164.06325

[012] [13] J. Rachůnek and D. Šalounová, Local bounded commutative residuated l-monoids, Czechoslovak Math. J. 57 (2007), 395-406. | Zbl 1174.06331

[013] [14] J. Rachůnek and F. Švrček, MV-algebras with additive closure operators, Acta Univ. Palacký, Mathematica 39 (2000), 183-189. | Zbl 1039.06005

[014] [15] H. Rasiowa and R. Sikorski, The Mathematics of Metamathematics, Panstw. Wyd. Nauk., Warszawa 1963. | Zbl 0122.24311

[015] [16] K.L.N. Swamy, Dually residuated lattice ordered semigroups, Math. Ann. 159 (1965), 105-114. | Zbl 0135.04203

[016] [17] E. Turunen, Mathematics Behind Fuzzy Logic, Physica-Verlag, Heidelberg-New York 1999. | Zbl 0940.03029