A non-empty set X of a carrier A of an algebra A is called Q-independent if the equality of two term functions f and g of the algebra A on any finite system of elements a₁,a₂,...,aₙ of X implies f(p(a₁),p(a₂),...,p(aₙ)) = g(p(a₁),p(a₂),...,p(aₙ)) for any mapping p ∈ Q. An algebra B is a retract of A if B is the image of a retraction (i.e. of an idempotent endomorphism of B). We investigate Q-independent subsets of algebras which have a retraction in their set of term functions.
@article{bwmeta1.element.bwnjournal-article-doi-10_7151_dmgaa_1128, author = {Anna Chwastyk}, title = {Retracts and Q-independence}, journal = {Discussiones Mathematicae - General Algebra and Applications}, volume = {27}, year = {2007}, pages = {235-243}, zbl = {1131.08003}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmgaa_1128} }
Anna Chwastyk. Retracts and Q-independence. Discussiones Mathematicae - General Algebra and Applications, Tome 27 (2007) pp. 235-243. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmgaa_1128/
[000] [1] R. Balbes and Ph. Dwinger, Distributive Lattices, Univ. Missouri Press, Columbia, Miss. 1974.
[001] [2] S. Burris and H.P. Sankappanavar, A Course in Universal Algebra, The Millennium Edition 2000. | Zbl 0478.08001
[002] [3] C.C. Chen and G. Grätzer, Stone lattices. I: Construction theorems, Can. J. Math. 21 (1969), 884-894. | Zbl 0184.03303
[003] [4] A. Chwastyk and K. Głazek, Remarks on Q-independence of Stone algebras, Math. Slovaca 56 (2) (2006), 181-197. | Zbl 1150.06310
[004] [5] K. Głazek, General notions of independence, pp. 112-128 in 'Advances in Algebra', World Scientific, Singapore 2003.
[005] [6] K. Głazek, Independence with respect to family of mappings in abstract algebras, Dissertationes Math. 81 (1971). | Zbl 0213.29601
[006] [7] K. Głazek, Some old and new problems in the independence theory, Coll. Math. 42 (1979), 127-189. | Zbl 0432.08001
[007] [8] K. Głazek and S. Niwczyk, A new perspective on Q-independence, General Algebra and Applications, Shaker Verlag, Aacken 2000.
[008] [9] K. Golema-Hartman, Exchange property and t-independence, Coll. Math. 36 (1976), 181-186. | Zbl 0355.08008
[009] [10] G. Grätzer, A new notion of independence in universal algebras, Colloq. Math. 17 (1967), 225-234. | Zbl 0189.29802
[010] [11] G. Grätzer, General Lattice Theory, Academic Press, New York 1978. | Zbl 0436.06001
[011] [12] G. Grätzer, Universal Algebra, second edition, Springer-Verlag, New York 1979.
[012] [13] E. Marczewski, A general scheme of the notions of independence in mathematics, Bull. Acad. Polon. Sci. (Ser. Sci. Math. Astr. Phys.) 6 (1958), 731-738. | Zbl 0088.03001
[013] [14] E. Marczewski, Concerning the independence in lattices, Colloq. Math. 10 (1963), 21-23. | Zbl 0122.25802
[014] [15] E. Marczewski, Independence in algebras of sets and Boolean algebras, Fund. Math. 48 (1960), 135-145. | Zbl 0149.26003
[015] [16] E. Marczewski, Independance with respect to a family of mappings, Colloq. Math. 20 (1968), 11-17.
[016] [17] J. Płonka and W. Poguntke, T-independence in distributive lattices, Colloq. Math. 36 (1976), 171-175. | Zbl 0362.06014
[017] [18] J. Schmidt, Eine algebraische Äquivalenz zum Auswahlaxiom, Fund. Math. 50 (1962), 485-496. | Zbl 0122.24701
[018] [19] S. Świerczkowski, Topologies in free algebras, Proc. London Math. Soc. 14 (3) (1964), 566-576. | Zbl 0123.09902
[019] [120] G. Szász, Marczewski independence in lattices and semilattices, Colloq. Math. 10 (1963), 15-23. | Zbl 0118.02401