We show that for an arbitrary Set-endofunctor T the generalized membership function given by a sub-cartesian transformation μ from T to the filter functor 𝔽 can be alternatively defined by the collection of subcoalgebras of constant T-coalgebras. Sub-natural transformations ε between any two functors S and T are shown to be sub-cartesian if and only if they respect μ. The class of T-coalgebras whose structure map factors through ε is shown to be a covariety if ε is a natural and sub-cartesian mono-transformation.
@article{bwmeta1.element.bwnjournal-article-doi-10_7151_dmgaa_1126, author = {H. Peter Gumm}, title = {On coalgebras and type transformations}, journal = {Discussiones Mathematicae - General Algebra and Applications}, volume = {27}, year = {2007}, pages = {187-197}, zbl = {1146.68400}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmgaa_1126} }
H. Peter Gumm. On coalgebras and type transformations. Discussiones Mathematicae - General Algebra and Applications, Tome 27 (2007) pp. 187-197. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmgaa_1126/
[000] [1] P. Aczel and N. Mendler, A final coalgebra theorem, pp. 357-365 in: D.H. Pitt et al., eds, Proceedings Category Theory and Computer Science, Lecture Notes in Computer Science, Springer 1989.
[001] [2] S. Awodey, Category Theory, Oxford University Press (2006).
[002] [3] H.P. Gumm, Birkhoff's variety theorem for coalgebras, Contributions to General Algebra 13 (2000), 159-173. | Zbl 0987.08004
[003] [4] H.P. Gumm, Functors for coalgebras, Algebra Universalis 45 (2001), 135-147. | Zbl 0982.08003
[004] [5] H.P. Gumm, From{T-coalgebras to filter structures and transition systems, pp. 194-212 in: D.H. Fiadeiro et al., eds, Algebra and Coalgebra in Computer Science, vol 3629 of Lecture Notes in Computer Science, Springer 2005. | Zbl 1151.18001
[005] [6] H.P. Gumm and T. Schröder, Coalgebras of bounded type, Math. Struct. in Comp. Science 12 (2001), 565-578. | Zbl 1011.08009
[006] [7] H.P. Gumm and T. Schröder, Types and coalgebraic structure, Algebra Universalis 53 (2005), 229-252. | Zbl 1086.08002
[007] [8] E.G. Manes, Implementing collection classes with monads, Math. Struct. in Comp. Science 8 (1998), 231-276. | Zbl 0916.68016
[008] [9] J.J.M.M. Rutten, Universal coalgebra: a theory of systems, Theoretical Computer Science 249 (2000), 3-80. | Zbl 0951.68038
[009] [10] J.D.H. Smith, Permutation representations of left quasigroups, Algebra Universalis 55 (2006), 387-406. | Zbl 1117.20051