We study a particular way of introducing pseudocomplementation in ordered semigroups with zero, and characterise the class of those pseudocomplemented semigroups, termed g-semigroups here, that admit a Glivenko type theorem (the pseudocomplements form a Boolean algebra). Some further results are obtained for g-semirings - those sum-ordered partially additive semirings whose multiplicative part is a g-semigroup. In particular, we introduce the notion of a partial Stone semiring and show that several well-known elementary characteristics of Stone algebras have analogues for such semirings.
@article{bwmeta1.element.bwnjournal-article-doi-10_7151_dmgaa_1125, author = {J\=anis C\=\i rulis}, title = {Pseudocomplements in sum-ordered partial semirings}, journal = {Discussiones Mathematicae - General Algebra and Applications}, volume = {27}, year = {2007}, pages = {169-186}, zbl = {1138.06007}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmgaa_1125} }
Jānis Cīrulis. Pseudocomplements in sum-ordered partial semirings. Discussiones Mathematicae - General Algebra and Applications, Tome 27 (2007) pp. 169-186. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmgaa_1125/
[000] [1] G. Birkhoff, Lattice Theory, AMS Colloq. Publ. 25, Providence, Rhode Island 1967.
[001] [2] T.S. Blyth, Pseudo-residuals in semigroups, J. London Math. Soc. 40 (1965), 441-454. | Zbl 0136.26903
[002] [3] J. Cīrulis, Quantifiers in semiring like logics, Proc. Latvian Acad. Sci. 57 B (2003), 87-92. | Zbl 1043.03047
[003] [4] A. Dvurečenskij and S. Pulmannová, New Trends in Quantum Structures, Kluwer Acad. Publ. and Ister Science, Dordrecht, Bratislava e.a., 2000. | Zbl 0987.81005
[004] [5] O. Frink, Representation of Boolean algebras, Bull. Amer. Math. Soc. 47 (1941), 755-756. | Zbl 0063.01459
[005] [6] O. Frink, Pseudo-complements in semilattices, Duke Math. J. 29 (1962), 505-514. | Zbl 0114.01602
[006] [7] G. Grätzer, General Lattice Theory, Akademie-Verlag, Berlin, 1978. | Zbl 0436.06001
[007] [8] U. Hebisch and H.J. Weinert, Semirings. Algebraic Theory and Applications in Computer Science, World Scientific, Singapore e.a., 1993. | Zbl 0829.16035
[008] [9] J.M. Howie, Fundamentals of Semigroup Theory, Clarendon Press, Oxford 1995.
[009] [10] M. Jackson and T. Stokes, Semilattice pseudo-complements on semigroups, Commun. Algebra 32 (2004), 2895-2918. | Zbl 1069.20055
[010] [11] M.F. Janowitz and C.S. Johnson, Jr., A note on Brouwerian and Glivenko semigroups, J. London Math. Soc. (2) 1 (1969), 733-736. | Zbl 0185.04803
[011] [12] E.G. Manes and D.B. Benson, The inverse semigroup of a sum-ordered semiring, Semigroup Forum 31 (1985), 129-152. | Zbl 0549.06014
[012] [13] T.P. Speed, A note on commutative semigroups, J. Austral. Math. Soc. 111 (1968), 731-736. | Zbl 0172.02502
[013] [14] U.M. Swamy and G.C. Rao e.a., Birkhoff centre of a poset, South Asia Bull. Math. 26 (2002), 509-516. | Zbl 1017.06002