It is known that (ℤₙ,-ₙ) are examples of entropic quasigroups which are not groups. In this paper we describe the table of characters for quasigroups (ℤₙ,-ₙ).
@article{bwmeta1.element.bwnjournal-article-doi-10_7151_dmgaa_1124, author = {Grzegorz Bi\'nczak and Joanna Kaleta}, title = {The table of characters of some quasigroups}, journal = {Discussiones Mathematicae - General Algebra and Applications}, volume = {27}, year = {2007}, pages = {147-167}, zbl = {1132.20042}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmgaa_1124} }
Grzegorz Bińczak; Joanna Kaleta. The table of characters of some quasigroups. Discussiones Mathematicae - General Algebra and Applications, Tome 27 (2007) pp. 147-167. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmgaa_1124/
[000] [1] O. Chein, H.O. Pflugfelder and J.D.H. Smith, Quasigroups and loops: theory and applications, Berlin 1990. | Zbl 0719.20036
[001] [2] K.W. Johnson and J.D.H. Smith, Characters of finite quasigroups, Eur. J. Comb. 5 (1984), 43-50. | Zbl 0537.20042
[002] [3] J.D.H. Smith, Representation Theory of Infinite Groups and Finite Quasigroups, Université de Montréal 1986. | Zbl 0609.20042
[003] [4] J.D.H. Smith, Combinatorial characters of quasigroups, pp. 163-187 in: Coding Theory and Design Theory, Part I: Coding Theory, (ed. Ray-Chaudhuri), Springer, New York, NY, 1990.
[004] [5] J.D.H. Smith, Representation Theory of quasigroups, Sci. Math. Japonicae 60 (2004), 171-204. | Zbl 1080.20062