The dimension of a variety
Ewa Graczyńska ; Dietmar Schweigert
Discussiones Mathematicae - General Algebra and Applications, Tome 27 (2007), p. 35-47 / Harvested from The Polish Digital Mathematics Library

Derived varieties were invented by P. Cohn in [4]. Derived varieties of a given type were invented by the authors in [10]. In the paper we deal with the derived variety Vσ of a given variety, by a fixed hypersubstitution σ. We introduce the notion of the dimension of a variety as the cardinality κ of the set of all proper derived varieties of V included in V. We examine dimensions of some varieties in the lattice of all varieties of a given type τ. Dimensions of varieties of lattices and all subvarieties of regular bands are determined.

Publié le : 2007-01-01
EUDML-ID : urn:eudml:doc:276936
@article{bwmeta1.element.bwnjournal-article-doi-10_7151_dmgaa_1117,
     author = {Ewa Graczy\'nska and Dietmar Schweigert},
     title = {The dimension of a variety},
     journal = {Discussiones Mathematicae - General Algebra and Applications},
     volume = {27},
     year = {2007},
     pages = {35-47},
     zbl = {1137.08004},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmgaa_1117}
}
Ewa Graczyńska; Dietmar Schweigert. The dimension of a variety. Discussiones Mathematicae - General Algebra and Applications, Tome 27 (2007) pp. 35-47. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmgaa_1117/

[000] [1] G. Birkhoff, On the structure of abstract algebras, J. Proc. Cambridge Phil. Soc. 31 (1935), 433-454. | Zbl 0013.00105

[001] [2] P.M. Cohn, Universal Algebra, Reidel, 1981 Dordreht.

[002] [3] K. Denecke and J. Koppitz, M-solid varieties of algebras, Advances in Mathematics, Vol. 10, Springer 2006. | Zbl 1094.08001

[003] [4] K. Denecke and S.L.Wismath, Hyperidentities and Clones, Gordon & Breach, 2000, ISBN 90-5699-235-X. ISSN 1041-5394.

[004] [5] T. Evans, The lattice of semigroups varieties, Semigroup Forum 2 (1971), 1-43. | Zbl 0225.20043

[005] [6] Ch.F. Fennemore, All varieties of bands, Ph.D. dissertation, Pensylvania State University 1969.

[006] [7] Ch.F. Fennemore, All varieties of bands I, Mathematische Nachrichten 48 (1971), 237-252. | Zbl 0194.02703

[007] [8] J.A. Gerhard, The lattice of equational classes of idempotent semigroups, J. of Algebra 15 (1970), 195-224. | Zbl 0194.02701

[008] [9] E. Graczyńska, Universal algebra via tree operads, Opole 2000, ISSN 1429-6063, ISBN 83-88492-75-6. | Zbl 1234.08001

[009] [10] E. Graczyńska and D. Schweigert, Hyperidentities of a given type, Algebra Universalis 27 (1990), 305-318. | Zbl 0715.08002

[010] [11] E. Graczyńska and D. Schweigert, Derived and fluid varieties, in print. | Zbl 1174.08308

[011] [12] G. Grätzer, Universal Algebra. 2nd ed., Springer, New York 1979.

[012] [13] R. McKenzie, G.F. McNulty and W. Taylor, Algebras, Lattices, Varieties, vol. I, 1987, ISBN 0-534-07651-3. | Zbl 0611.08001

[013] [14] J. Płonka, On equational classes of abstract algebras defined by regular equations, Fund. Math. 64 (1969), 241-247. | Zbl 0187.28702

[014] [15] J. Płonka, Proper and inner hypersubstitutions of varieties, pp. 106-116 in: 'Proceedings of the International Conference Summer School on General Algebra and Ordered Sets', Olomouc 1994. | Zbl 0828.08003

[015] [16] D. Schweigert, Hyperidentities, pp. 405-506 in: Algebras and Orders, I.G. Rosenberg and G. Sabidussi, Kluwer Academic Publishers, 1993, ISBN 0-7923-2143-X.

[016] [17] D. Schweigert, On derived varieties, Discussiones Mathematicae Algebra and Stochastic Methods 18 (1998), 17-26. | Zbl 0916.08006