On the maximal subsemigroups of the semigroup of all monotone transformations
Iliya Gyudzhenov ; Ilinka Dimitrova
Discussiones Mathematicae - General Algebra and Applications, Tome 26 (2006), p. 199-217 / Harvested from The Polish Digital Mathematics Library

In this paper we consider the semigroup Mₙ of all monotone transformations on the chain Xₙ under the operation of composition of transformations. First we give a presentation of the semigroup Mₙ and some propositions connected with its structure. Also, we give a description and some properties of the class J̃n-1 of all monotone transformations with rank n-1. After that we characterize the maximal subsemigroups of the semigroup Mₙ and the subsemigroups of Mₙ which are maximal in J̃n-1.

Publié le : 2006-01-01
EUDML-ID : urn:eudml:doc:276874
@article{bwmeta1.element.bwnjournal-article-doi-10_7151_dmgaa_1112,
     author = {Iliya Gyudzhenov and Ilinka Dimitrova},
     title = {On the maximal subsemigroups of the semigroup of all monotone transformations},
     journal = {Discussiones Mathematicae - General Algebra and Applications},
     volume = {26},
     year = {2006},
     pages = {199-217},
     zbl = {1148.20046},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmgaa_1112}
}
Iliya Gyudzhenov; Ilinka Dimitrova. On the maximal subsemigroups of the semigroup of all monotone transformations. Discussiones Mathematicae - General Algebra and Applications, Tome 26 (2006) pp. 199-217. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmgaa_1112/

[000] [1] H. Clifford and G.B. Preston, The algebraic theory of semigroups, 1. Amer. Math. Soc., Providence, 1961, MR 24#A2627.

[001] [2] V.H. Fernandes, G.M.S. Gomes and M.M. Jesus, Presentations for Some Monoids of Partial Transformations on a Finite Chain, Communications in Algebra 33 (2005), 587-604. | Zbl 1072.20079

[002] [3] Il. Gyudzhenov and Il. Dimitrova, On Properties of Idempotents of the Semigroup of Isotone Transformations and it Structure, Comptes rendus de l'Academie bulgare des Sciences, to appear.

[003] [4] J.M. Howie, Products of Idempotents in Certain Semigroups of Transformations, Proc. Edinburgh Math. Soc. 17 (2) (1971), 223-236. | Zbl 0226.20072

[004] [5] J.W. Nichols, A Class of Maximal Inverse Subsemigroups of TX, Semigroup Forum 13 (1976), 187-188. | Zbl 0359.20048

[005] [6] N.R. Reilly, Maximal Inverse Subsemigroups of TX, Semigroup Forum, Subsemigroups of Finite Singular Semigroups, Semigroup Forum 15 (1978), 319-326. | Zbl 0379.20056

[006] [7] Y. Taijie and Y. Xiuliang, A Classification of Maximal Idempotent-Generated, 4 (2002), 243-264.

[007] [8] K. Todorov and L. Kračolova, On the Rectangular Bands of Groups of D-Classes of the Symmetric Semigroup, Periodica Mathem. Hungarica 13 (2) (1983), 97-104. | Zbl 0477.20049

[008] [9] Y. Xiuliang, A Classification of Maximal Inverse Subsemigroups of Finite Symmetric Inverse Semigroups, Communications in Algebra 27 (1999), 4089-4096. | Zbl 0943.20064

[009] [10] Y. Xiuliang, A Classification of Maximal Subsemigroups of Finite Order-Preserving Transformation Semigroups, Communications in Algebra 28 (3) (2000), 1503-1513. | Zbl 0948.20039

[010] [11] Y. Xiuliang and Lu Chunghan, Maximal Properties of Some Subsemigroups in Finite Order-Preserving Transformation Semigroups, Communications in Algebra 28 (2000), 3125-3135. | Zbl 0952.20049