We introduce the concepts of pre-implication algebra and implication algebra based on orthosemilattices which generalize the concepts of implication algebra, orthoimplication algebra defined by J.C. Abbott [2] and orthomodular implication algebra introduced by the author with his collaborators. For our algebras we get new axiom systems compatible with that of an implication algebra. This unified approach enables us to compare the mentioned algebras and apply a unified treatment of congruence properties.
@article{bwmeta1.element.bwnjournal-article-doi-10_7151_dmgaa_1108, author = {Ivan Chajda}, title = {Implication algebras}, journal = {Discussiones Mathematicae - General Algebra and Applications}, volume = {26}, year = {2006}, pages = {141-153}, zbl = {1133.03041}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmgaa_1108} }
Ivan Chajda. Implication algebras. Discussiones Mathematicae - General Algebra and Applications, Tome 26 (2006) pp. 141-153. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmgaa_1108/
[000] [1] J.C. Abbott, Semi-Boolean algebra, Matem. Vestnik 4 (1967), 177-198. | Zbl 0153.02704
[001] [2] J.C. Abbott, Orthoimplication Algebras, Studia Logica 35 (1976), 173-177. | Zbl 0331.02036
[002] [3] L. Beran, Orthomodular Lattices, Algebraic Approach, Mathematic and its Applications, D. Reidel Publ. Comp., 1985. | Zbl 0558.06008
[003] [4] I. Chajda and R. Halaš, An Implication in Orthologic, submitted to Intern. J. Theor. Phys. 44 (2006), 735-744. | Zbl 1104.81017
[004] [5] I. Chajda, R. Halaš and H. Länger, Orthomodular implication algebras, Intern. J. Theor. Phys. 40 (2001), 1875-1884. | Zbl 0992.06008
[005] [6] G.M. Hardegree, Quasi-implication algebras, Part I: Elementary theory, Algebra Universalis 12 (1981), 30-47. | Zbl 0497.03049
[006] [7] G.M. Hardegree, Quasi-implication algebras, Part II: Sructure theory, Algebra Universalis 12 (1981), 48-65. | Zbl 0497.03050
[007] [8] J. Hedliková, Relatively orthomodular lattices, Discrete Math., 234 (2001), 17-38. | Zbl 0983.06008
[008] [9] M.F. Janowitz, A note on generalized orthomodular lattices, J. Natural Sci. Math. 8 (1968), 89-94. | Zbl 0169.02104
[009] [10] N.D. Megill and M. Pavičić, Quantum implication algebras, Intern. J. Theor. Phys. 48 (2003), 2825-2840. | Zbl 1039.81007