Regular elements and Green's relations in Menger algebras of terms
Klaus Denecke ; Prakit Jampachon
Discussiones Mathematicae - General Algebra and Applications, Tome 26 (2006), p. 85-109 / Harvested from The Polish Digital Mathematics Library

Defining an (n+1)-ary superposition operation Sn on the set Wτ(Xn) of all n-ary terms of type τ, one obtains an algebra n-cloneτ:=(Wτ(Xn);Sn,x1,...,xn) of type (n+1,0,...,0). The algebra n-clone τ is free in the variety of all Menger algebras ([9]). Using the operation Sn there are different possibilities to define binary associative operations on the set Wτ(Xn) and on the cartesian power Wτ(Xn)n. In this paper we study idempotent and regular elements as well as Green’s relations in semigroups of terms with these binary associative operations as fundamental operations.

Publié le : 2006-01-01
EUDML-ID : urn:eudml:doc:276840
@article{bwmeta1.element.bwnjournal-article-doi-10_7151_dmgaa_1106,
     author = {Klaus Denecke and Prakit Jampachon},
     title = {Regular elements and Green's relations in Menger algebras of terms},
     journal = {Discussiones Mathematicae - General Algebra and Applications},
     volume = {26},
     year = {2006},
     pages = {85-109},
     zbl = {1101.08003},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmgaa_1106}
}
Klaus Denecke; Prakit Jampachon. Regular elements and Green's relations in Menger algebras of terms. Discussiones Mathematicae - General Algebra and Applications, Tome 26 (2006) pp. 85-109. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmgaa_1106/

[000] [1] K. Denecke, Stongly Solid Varieties and Free Generalized Clones, Kyungpook Math. J. 45 (2005), 33-43. | Zbl 1156.08002

[001] [2] K. Denecke and S.L. Wismath, Universal Algebra and Applications in Theoretical Computer Science, Chapman & Hall/CRC, Boca Raton, London, New York, Washington, D.C., 2002.

[002] [3] K. Denecke and S.L. Wismath, Complexity of Terms, Composition and Hypersubstitution, Int. J. Math. Math. Sci. 15 (2003), 959-969. | Zbl 1015.08005

[003] [4] K. Denecke and P. Jampachon, N-solid varieties and free Menger algebras of rank n, East-West Journal of Mathematics 5 (1) (2003), 81-88. | Zbl 1083.08005

[004] [5] K. Denecke and P. Jampachon, Clones of Full Terms, Algebra Discrete Math. 4 (2004), 1-11. | Zbl 1091.08003

[005] [6] K. Denecke and J. Koppitz, M-solid Varieties of Algebras, Advances in Mathematics, Springer Science+Business Media, Inc., 2006. | Zbl 1094.08001

[006] [7] J.M. Howie, Fundamenntals of Semigroup Theory, Oxford Science Publications, Clarendon Press, Oxford 1995.

[007] [8] K. Menger, The algebra of functions: past, present, future, Rend. Mat. 20 (1961), 409-430. | Zbl 0113.03904

[008] [9] B.M. Schein and V.S. Trohimenko, Algebras of multiplace functions, Semigroup Forum 17 (1979), 1-64.

[009] [10] V.S. Trohimenko, v-regular Menger algebras, Algebra Univers. 38 (1997), 150-164.