Extension of classical sequences to negative integers
Benali Benzaghou ; Daniel Barsky
Discussiones Mathematicae - General Algebra and Applications, Tome 26 (2006), p. 75-83 / Harvested from The Polish Digital Mathematics Library

We give a method to extend Bell exponential polynomials to negative indices. This generalizes many results of this type such as the extension to negative indices of Stirling numbers or of Bernoulli numbers.

Publié le : 2006-01-01
EUDML-ID : urn:eudml:doc:276831
@article{bwmeta1.element.bwnjournal-article-doi-10_7151_dmgaa_1105,
     author = {Benali Benzaghou and Daniel Barsky},
     title = {Extension of classical sequences to negative integers},
     journal = {Discussiones Mathematicae - General Algebra and Applications},
     volume = {26},
     year = {2006},
     pages = {75-83},
     zbl = {1096.11006},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmgaa_1105}
}
Benali Benzaghou; Daniel Barsky. Extension of classical sequences to negative integers. Discussiones Mathematicae - General Algebra and Applications, Tome 26 (2006) pp. 75-83. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmgaa_1105/

[000] [1] D. Branson, An extension of Stirling numbers, Fib. Quat. series 34 (3) (1996), 213-223. | Zbl 0863.11012

[001] [2] L. Comtet, Analyse combinatoire, Vol. I and II, Presses Universitaires de France, Paris 1970.

[002] [3] S. Roman, The harmonic logarithms and the binomial formula, J. Combin. Theory, Serie A, series 63 (1993), 143-163. | Zbl 0774.05004