We give a method to extend Bell exponential polynomials to negative indices. This generalizes many results of this type such as the extension to negative indices of Stirling numbers or of Bernoulli numbers.
@article{bwmeta1.element.bwnjournal-article-doi-10_7151_dmgaa_1105,
author = {Benali Benzaghou and Daniel Barsky},
title = {Extension of classical sequences to negative integers},
journal = {Discussiones Mathematicae - General Algebra and Applications},
volume = {26},
year = {2006},
pages = {75-83},
zbl = {1096.11006},
language = {en},
url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmgaa_1105}
}
Benali Benzaghou; Daniel Barsky. Extension of classical sequences to negative integers. Discussiones Mathematicae - General Algebra and Applications, Tome 26 (2006) pp. 75-83. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmgaa_1105/
[000] [1] D. Branson, An extension of Stirling numbers, Fib. Quat. series 34 (3) (1996), 213-223. | Zbl 0863.11012
[001] [2] L. Comtet, Analyse combinatoire, Vol. I and II, Presses Universitaires de France, Paris 1970.
[002] [3] S. Roman, The harmonic logarithms and the binomial formula, J. Combin. Theory, Serie A, series 63 (1993), 143-163. | Zbl 0774.05004