Presolid varieties of n-semigroups
Avapa Chantasartrassmee ; Jörg Koppitz
Discussiones Mathematicae - General Algebra and Applications, Tome 25 (2005), p. 221-233 / Harvested from The Polish Digital Mathematics Library

he class of all M-solid varieties of a given type t forms a complete sublattice of the lattice ℒ(τ) of all varieties of algebrasof type t. This gives a tool for a better description of the lattice ℒ(τ) by characterization of complete sublattices. In particular, this was done for varieties of semigroups by L. Polák ([10]) as well as by Denecke and Koppitz ([4], [5]). Denecke and Hounnon characterized M-solid varieties of semirings ([3]) and M-solid varieties of groups were characterized by Koppitz ([9]). In the present paper we will do it for varieties of n-semigroups. An n-semigroup is an algebra of type (n), where the operation satisfies the [i,j]-associative laws for 1 ≤ i ≤ j ≤ n, introduced by Dörtnte ([2]). It is clear that the notion of a 2-semigroup is the same as the notion of a semigroup. Here we will consider the case n ≥ 3.

Publié le : 2005-01-01
EUDML-ID : urn:eudml:doc:287688
@article{bwmeta1.element.bwnjournal-article-doi-10_7151_dmgaa_1100,
     author = {Avapa Chantasartrassmee and J\"org Koppitz},
     title = {Presolid varieties of n-semigroups},
     journal = {Discussiones Mathematicae - General Algebra and Applications},
     volume = {25},
     year = {2005},
     pages = {221-233},
     zbl = {1107.08006},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmgaa_1100}
}
Avapa Chantasartrassmee; Jörg Koppitz. Presolid varieties of n-semigroups. Discussiones Mathematicae - General Algebra and Applications, Tome 25 (2005) pp. 221-233. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmgaa_1100/

[000] [1] V. Budd, K. Denecke and S.L. Wismath, Short-solid superassociative type (n) varieties, East-West J. of Mathematics 3 (2) (2001), 129-145. | Zbl 1008.08004

[001] [2] W. Dörnte, Untersuchungen über einen verallgemeinerten Gruppenbegriff, Math. Z. 29 (1928), 1-19. | Zbl 54.0152.01

[002] [3] K. Denecke and Hounnon, All solid varieties of semirings, Journal of Algebra 248 (2002), 107-117.

[003] [4] K. Denecke and J. Koppitz, Pre-solid varieties of semigroups, Archivum Mathematicum 31 (1995), 171-181. | Zbl 0842.20049

[004] [5] K. Denecke and J. Koppitz, Finite monoids of hypersubstitutions of type t = (2), Semigroup Forum 56 (1998), 265-275. | Zbl 1080.20502

[005] [6] K. Denecke and M. Reichel, Monoids of hypersubstitutions and M-solid varieties, Contributions to General Algebra 9 (1995), 117-126. | Zbl 0884.08008

[006] [7] K. Denecke, J. Koppitz and S.L. Wismath, Solid varieties of arbitrary type, Algebra Universalis 48 (2002), 357-378. | Zbl 1064.08006

[007] [8] K. Denecke and S.L. Wismath, Hyperidentities and clones, Gordon and Breach Scientific Publisher, 2000.

[008] [9] J. Koppitz, Hypersubstitutions and groups, Novi Sad J. Math. 34 (2) (2004), 127-139. | Zbl 1212.20059

[009] [10] L. Polák, All solid varieties of semigroups, Journal of Algebra 219 (1999), 421-436. | Zbl 0935.20050

[010] [11] J. Płonka, Proper and inner hypersubstitutions of varieties, 'Proceedings of the International Conference: 'Summer School on General Algebra and Ordered Sets', Olomouc 1994', Palacký University, Olomouc 1994, 106-115. | Zbl 0828.08003