Categories of functors between categories with partial morphisms
Hans-Jürgen Vogel
Discussiones Mathematicae - General Algebra and Applications, Tome 25 (2005), p. 39-87 / Harvested from The Polish Digital Mathematics Library

It is well-known that the composition of two functors between categories yields a functor again, whenever it exists. The same is true for functors which preserve in a certain sense the structure of symmetric monoidal categories. Considering small symmetric monoidal categories with an additional structure as objects and the structure preserving functors between them as morphisms one obtains different kinds of functor categories, which are even dt-symmetric categories.

Publié le : 2005-01-01
EUDML-ID : urn:eudml:doc:287644
@article{bwmeta1.element.bwnjournal-article-doi-10_7151_dmgaa_1092,
     author = {Hans-J\"urgen Vogel},
     title = {Categories of functors between categories with partial morphisms},
     journal = {Discussiones Mathematicae - General Algebra and Applications},
     volume = {25},
     year = {2005},
     pages = {39-87},
     zbl = {1094.18004},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmgaa_1092}
}
Hans-Jürgen Vogel. Categories of functors between categories with partial morphisms. Discussiones Mathematicae - General Algebra and Applications, Tome 25 (2005) pp. 39-87. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmgaa_1092/

[000] [1] A. Asperti and G. Longo, Categories of partial morphisms and the relation between type structures, Banach Semester 1985, Nota Scientifica, 7-85, University of Pisa, 1986.

[001] [2] P.-L. Curien and A. Obtuowicz, Partiality, cartesian closedness, and toposes, Inform. and Comput. 80 (1989), 50-95. | Zbl 0674.18001

[002] [3] R.A. Di Paola and A. Heller, Dominical categories: recursion theory without elements, J. Symbolic Logic 52 (1997), 594-635. | Zbl 0649.03032

[003] [4] S. Eilenberg and G.M. Kelly, Closed categories, 'Procedings of the Conference on Categorical Algebra (La Jolla, 1965)', Springer-Verlag, New York 1966, 421-562. | Zbl 0192.10604

[004] [5] A. Heller, Dominical categories, 'Atti della Scuola di Logica di Siena', University di Siena 1982, 373-412.

[005] [6] A. Heller, Dominical categories and recursion theory, 'Procedings of the Conference on Mathematical Logic', Vol 2, University of Siena, Siena 1985, 339-344. | Zbl 0592.03032

[006] [7] H.-J. Hoehnke, Allgemeine Algebra der Automaten, 'Automaten und Funktoren', by L. Budach and H.-J. Hoehnke, Akademie-Verlag, Berlin 1975.

[007] [8] H.-J. Hoehnke, On partial algebras, Colloq. Math. Soc. J. Bolyai, Vol. 29 ('Universal Algebra; Esztergom (Hungary) 1977'), North-Holland, Amsterdam 1982, 373-412.

[008] [9] H.-J. Hoehnke, On Yoneda-Schreckenberger's embedding of the class of monoidal categories, 'Proceedings of the Conference on Theory and Applications of Semigroups (Greifswald 1984)', Math. Gesellsch.d. DDR, Berlin 1985, 19-43. | Zbl 0654.18001

[009] [10] H.-J. Hoehnke, On certain classes of categories and monoids constructed from abstract Mal'cev clones. I, ' Universal and Applied Algebra, (Turawa 1988)', World Sci. Publishing, Singapore 1989, 149-176. | Zbl 0805.18006

[010] [11] H.-J. Hoehnke, On certain classes of categories and monoids constructed from abstract Mal'cev clones. II, Preprint P-MATH-3/89, Akad. d. Wiss. d. DDR, Karl-Weierstrass-Inst. f. Math., Berlin 1989. | Zbl 0805.18007

[011] [12] H.-J. Hoehnke, On certain classes of categories and monoids constructed from abstract Mal'cev clones. IV, 'General Algebra and Discrete Mathematics', Heldermann Verlag, Lemgo 1995, 137-167. | Zbl 0819.18003

[012] [13] G. Longo and E. Moggi, Cartesian closed categories of enumerations foreffective type structures, Lectrure Notes in Comp. Sci. 173, ('Semantics of Data Types'), Springer-Verlag, Berlin 1984, 235-255.

[013] [14] A. Obtuowicz, The logic of categories of partial functions and its applications, Dissertationes Math. (Rozprawy Math.) 241 (1986), 1-164.

[014] [15] E.P. Robinson and G. Rosolini, Categories of partial maps, Inform. and Comput. 79 (1988), 95-130. | Zbl 0656.18001

[015] [16] G. Rosolini, Domains and dominical categories, Riv. Math. Univ. Parma (4) 11 (1985), 387-397. | Zbl 0606.03011

[016] [17] G. Rosolini, Continuity and Effectiveness in Topoi, Ph.D. Thesis, University of Oxford, 1986.

[017] [18] J. Schreckenberger, Über die Einbettung von dht-symmetrischen Kategorien in die Kategorie der partiellen Abbildungen zwischen Mengen, Preprint P-12/80, Zentralinst. f. Math., Akad. d. Wiss. d. DDR, Berlin 1980. | Zbl 0442.18002

[018] [19] J. Schreckenberger, Zur Theorie der dht-symmetrischen Kategorien, Disseration (B), Päd. Hochschule Potsdam, Math.-Naturwiss. Fak., Potsdam 1984.

[019] [20] J. Schreckenberger, Zur Axiomatik von Kategorien partieller Morphismen, Beiträge Algebra Geom. 24 (1987), 83-98.

[020] [21] J. Schreckenberger, Mehrfache Partialisierung von Kategorien, Beiträge Algebra Geom. 25 (1987), 109-122. | Zbl 0622.18001

[021] [22] H.-J. Vogel, Eine kategorientheoretische Sprache zur Beschreibung von Birkhoff-Algebren, Report R-Math-06/84, Inst. f. Math., Akad. d. Wiss. d. DDR, Berlin 1984. | Zbl 0554.18004

[022] [23] H.-J. Vogel, Relations as morphisms of a certain monoidal category, 'General Algebra and Applications in Discrete Mathematics', Shaker Verlag, Aachen 1997, 205-216.

[023] [24] H.-J. Vogel, On functors between dht∇-symmetric categories, Discuss. Math.- Algebra and Stochastic Methods 18 (1998), 131-147. | Zbl 0921.18005

[024] [25] H.-J. Vogel, On the structure of halfdiagonal-halfterminal symmetric categories with diagonal inversions, Discuss. Math.- Gen. Algebra and Appl. 21 (2001), 139-163. | Zbl 0998.18003

[025] [26] H.-J. Vogel, Algebraic theories for Birkhoff-algebras, to appear.