Graph algebras establish a connection between directed graphs without multiple edges and special universal algebras of type (2,0). We say that a graph G satisfies an identity s ≈ t if the corresponding graph algebra A(G) satisfies s ≈ t. A graph G = (V,E) is called a transitive graph if the corresponding graph algebra A(G) satisfies the equation x(yz) ≈ (xz)(yz). An identity s ≈ t of terms s and t of any type t is called a hyperidentity of an algebra A̲ if whenever the operation symbols occurring in s and t are replaced by any term operations of A of the appropriate arity, the resulting identities hold in A̲ . In this paper we characterize transitive graph algebras, identities and hyperidentities in transitive graph algebras.
@article{bwmeta1.element.bwnjournal-article-doi-10_7151_dmgaa_1091, author = {Tiang Poomsa-ard and Jeerayut Wetweerapong and Charuchai Samartkoon}, title = {Hyperidentities in transitive graph algebras}, journal = {Discussiones Mathematicae - General Algebra and Applications}, volume = {25}, year = {2005}, pages = {23-37}, zbl = {1102.08004}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmgaa_1091} }
Tiang Poomsa-ard; Jeerayut Wetweerapong; Charuchai Samartkoon. Hyperidentities in transitive graph algebras. Discussiones Mathematicae - General Algebra and Applications, Tome 25 (2005) pp. 23-37. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmgaa_1091/
[000] [1] K. Denecke and T. Poomsa-ard, Hyperidentities in graph algebras, 'Contributions to General Algebra and Applications in Discrete Mathematics', Shaker-Verlag, Aachen 1997, 59-68. | Zbl 0915.08004
[001] [2] K. Denecke and M. Reichel, Monoids of hypersubstitutions and M-solid varieties, 'Contributions to General Algebra', vol. 9, Verlag Hölder-Pichler-Tempsky, Vienna 1995, 117-125. | Zbl 0884.08008
[002] [3] E.W. Kiss, R. Pöschel and P. Pröhle, Subvarieties of varieties generated by graph algebras, Acta Sci. Math. (Szeged) 54 (1990), 57-75. | Zbl 0713.08006
[003] [4] J. Płonka, Hyperidentities in some of vareties, 'General Algebra and Discrete Mathematics', Heldermann Verlag, Lemgo 1995, 195-213.
[004] [5] J. Płonka, Proper and inner hypersubstitutions of varieties, 'Proceedings of the International Conference: 'Summer School on General Algebra and Ordered Sets', Olomouc 1994', Palacký University, Olomouc 1994, 106-115. | Zbl 0828.08003
[005] [6] T. Poomsa-ard, Hyperidentities in associative graph algebras, Discuss. Math. - Gen. Algebra Appl. 20 (2000), 169-182. | Zbl 0977.08006
[006] [7] R. Pöschel, The equational logic for graph algebras, Z. Math. Logik Grundl. Math. 35 (1989), 273-282. | Zbl 0661.03020
[007] [8] R. Pöschel, Graph algebras and graph varieties, Algebra Universalis 27 (1990), 559-577. | Zbl 0725.08002
[008] [9] C.R. Shallon, Nonfinitely Based Finite Algebras Derived from Lattices, Ph.D. Thesis, University of California, Los Angeles, CA, 1979.