We present a groupoid which can be converted into a Boolean algebra with respect to term operations. Also conversely, every Boolean algebra can be reached in this way.
@article{bwmeta1.element.bwnjournal-article-doi-10_7151_dmgaa_1083, author = {Ivan Chajda}, title = {A groupoid characterization of Boolean algebras}, journal = {Discussiones Mathematicae - General Algebra and Applications}, volume = {24}, year = {2004}, pages = {177-184}, zbl = {1086.20041}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmgaa_1083} }
Ivan Chajda. A groupoid characterization of Boolean algebras. Discussiones Mathematicae - General Algebra and Applications, Tome 24 (2004) pp. 177-184. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmgaa_1083/
[000] [1] J.C. Abbott, Semi-boolean algebra, Mat. Vestnik 4 (1967), 177-198. | Zbl 0153.02704
[001] [2] G. Birkhoff, Lattice Theory, third edition, Publ. Amer. Math. Soc., Providence, RI, 1967.
[002] [3] J. Dudek, Polynomials in idempotent commutative groupoids, Dissert. Math. 286 (1989), 1-59. | Zbl 0687.08003