Certain ring-like structures, so-called orthorings, are introduced which are in a natural one-to-one correspondence with lattices with 0 every principal ideal of which is an ortholattice. This correspondence generalizes the well-known bijection between Boolean rings and Boolean algebras. It turns out that orthorings have nice congruence and ideal properties.
@article{bwmeta1.element.bwnjournal-article-doi-10_7151_dmgaa_1081, author = {Ivan Chajda and Helmut L\"anger}, title = {Orthorings}, journal = {Discussiones Mathematicae - General Algebra and Applications}, volume = {24}, year = {2004}, pages = {137-147}, zbl = {1080.16053}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmgaa_1081} }
Ivan Chajda; Helmut Länger. Orthorings. Discussiones Mathematicae - General Algebra and Applications, Tome 24 (2004) pp. 137-147. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmgaa_1081/
[000] [1] G. Birkhoff, Lattice Theory, third edition, AMS Colloquium Publ. 25, Providence, RI, 1979.
[001] [2] I. Chajda, Pseudosemirings induced by ortholattices, Czechoslovak Math. J. 46 (1996), 405-411. | Zbl 0879.06003
[002] [3] I. Chajda and G. Eigenthaler, A note on orthopseudorings and Boolean quasirings, Österr. Akad. Wiss. Math.-Natur. Kl. Sitzungsber. II 207 (1998), 83-94. | Zbl 1040.06003
[003] [4] I. Chajda, G. Eigenthaler and H. Länger, Congruence Classes in Universal Algebra, Heldermann Verlag, Lemgo 2003. | Zbl 1014.08001
[004] [5] I. Chajda and H. Länger, Ring-like operations in pseudocomplemented semilattices, Discuss. Math. Gen. Algebra Appl. 20 (2000), 87-95. | Zbl 0968.06004
[005] [6] I. Chajda and H. Länger, Ring-like structures corresponding to MV-algebras via symmetric difference, Österr. Akad. Wiss. Math.-Natur. Kl. Sitzungsber. II, to appear. | Zbl 1116.06012
[006] [7] I. Chajda, H. Länger and M. Maczyński, Ring-like structures corresponding to generalized orthomodular lattices, Math. Slovaca 54 (2004), 143-150. | Zbl 1068.06008
[007] [8] G. Dorfer, A. Dvurecenskij and H. Länger, Symmetric difference in orthomodular lattices, Math. Slovaca 46 (1996), 435-444. | Zbl 0890.06006
[008] [9] D. Dorninger, H. Länger and M. Maczyński, The logic induced by a system of homomorphisms and its various algebraic characterizations, Demonstratio Math. 30 (1997), 215-232. | Zbl 0879.06005
[009] [10] D. Dorninger, H. Länger and M. Maczyński, On ring-like structures occurring in axiomatic quantum mechanics, Österr. Akad. Wiss. Math.-Natur. Kl. Sitzungsber. II 206 (1997), 279-289. | Zbl 0945.03095
[010] [11] D. Dorninger, H. Länger and M. Maczyński, On ring-like structures induced by Mackey's probability function, Rep. Math. Phys. 43 (1999), 499-515. | Zbl 1056.81004
[011] [12] D. Dorninger, H. Länger and M. Maczyński, Lattice properties of ring-like quantum logics, Intern. J. Theor. Phys. 39 (2000), 1015-1026. | Zbl 0967.03055
[012] [13] D. Dorninger, H. Länger and M. Maczyński, Concepts of measures on ring-like quantum logics, Rep. Math. Phys. 47 (2001), 167-176. | Zbl 0980.81009
[013] [14] D. Dorninger, H. Länger and M. Maczyński, Ring-like structures with unique symmetric difference related to quantum logic, Discuss. Math. General Algebra Appl. 21 (2001), 239-253. | Zbl 1014.81003
[014] [15] G. Grätzer, General Lattice Theory, second edition, Birkhäuser Verlag, Basel 1998. | Zbl 0909.06002
[015] [16] J. Hedlíková, Relatively orthomodular lattices, Discrete Math. 234 (2001), 17-38. | Zbl 0983.06008
[016] [17] M. F. Janowitz, A note on generalized orthomodular lattices, J. Natur. Sci. Math. 8 (1968), 89-94. | Zbl 0169.02104
[017] [18] H. Länger, Generalizations of the correspondence between Boolean algebras and Boolean rings to orthomodular lattices, Tatra Mt. Math. Publ. 15 (1998), 97-105. | Zbl 0939.03075
[018] [19] H. Werner, A Mal'cev condition for admissible relations, Algebra Universalis 3 (1973), 263. | Zbl 0276.08004