On interval decomposition lattices
Stephan Foldes ; Sándor Radeleczki
Discussiones Mathematicae - General Algebra and Applications, Tome 24 (2004), p. 95-114 / Harvested from The Polish Digital Mathematics Library

Intervals in binary or n-ary relations or other discrete structures generalize the concept of interval in an ordered set. They are defined abstractly as closed sets of a closure system on a set V, satisfying certain axioms. Decompositions are partitions of V whose blocks are intervals, and they form an algebraic semimodular lattice. Lattice-theoretical properties of decompositions are explored, and connections with particular types of intervals are established.

Publié le : 2004-01-01
EUDML-ID : urn:eudml:doc:287689
@article{bwmeta1.element.bwnjournal-article-doi-10_7151_dmgaa_1078,
     author = {Stephan Foldes and S\'andor Radeleczki},
     title = {On interval decomposition lattices},
     journal = {Discussiones Mathematicae - General Algebra and Applications},
     volume = {24},
     year = {2004},
     pages = {95-114},
     zbl = {1062.06011},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmgaa_1078}
}
Stephan Foldes; Sándor Radeleczki. On interval decomposition lattices. Discussiones Mathematicae - General Algebra and Applications, Tome 24 (2004) pp. 95-114. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmgaa_1078/

[000] [1] H. Bachmann, Transfinite Zahlen, Springer-Verlag, Berlin 1967.

[001] [2] A. Bastiani, Théorie des Ensembles, Centre de Documentation Universitaire, Paris 1970.

[002] [3] P. Crawley and R.P. Dilworth, Algebraic Theory of Lattices, Prentice-Hall Inc., Englewood Cliffs, NJ, 1973. | Zbl 0494.06001

[003] [4] W. Dörfler, Ueber die X-Summe von gerichteten Graphen, Arch. Math. 22 (1971), 24-36. | Zbl 0214.51202

[004] [5] W. Dörfler and W. Imrich, Über die X-Summe von Mengensystemen, Colloq. Soc. Math. J. Bolyai, vol. 4 ('Combinatorial Theory and its Applications, I.'), North-Holland, Amsterdam 1970, 297-309.

[005] [6] S. Foldes, Relation denses et dispersées: généralisation d'un théorème de Hausdorff, C.R. Acad. Sc. Paris A 277 (1973), 269-271. | Zbl 0268.04002

[006] [7] S. Foldes, On intervals in relational structures, Z. Math. Logik Grundlag. Math. 26 (1980), 97-101. | Zbl 0457.08001

[007] [8] S. Foldes, Lexicographic sums of ordered sets and hypergroupoids, 'Algebraic Hyperstructures and Applications', World Scientific Publ., Teaneck, NJ, 1991, 97-101. | Zbl 0745.20061

[008] [9] R. Fraissé, Course of Mathematical Logic, Vol. I, Reidel, Dordrecht 1973.

[009] [10] R. Fraissé, Present problems about intervals in relation theory and logic, 'Non-classical Logics, Model theory and Computability', North-Holland, Amsterdam 1977, 179-200.

[010] [11] R. Fraissé, Theory of Relations, Revised Edition, Elsevier, Amsterdam 2000. | Zbl 0965.03059

[011] [12] T. Gallai, Transitiv orientierbare graphen, Acta Math. Acad. Sci. Hungar. 18 (1967), 25-66. | Zbl 0153.26002

[012] [13] D.W.H. Gillam, A concrete representation theorem for intervals of multirelations, Z. Math. Logik Grundlag. Math. 24 (1978), 463-466. | Zbl 0433.08003

[013] [14] A. Gleyzal, Order types and structure of orders, Trans. Amer. Math. Soc. 48 (1950), 451-466. | Zbl 0025.31001

[014] [15] G. Grätzer, General Lattice Theory, Academic Press, New York 1978. | Zbl 0436.06001

[015] [16] M. Habib and M.C. Maurer, On X-join decomposition for undirected graphs, Discrete Appl. Math. 1 (1979), 201-207. | Zbl 0439.05041

[016] [17] F. Hausdorff, Grundzüge der Mengenlehre, Veit u. Co., Leipzig 1914, reprinted Chelsea, New York 1949.

[017] [18] F. Hausdorff, Grundzüge einer Theorie der geordneten Mengen, Math. Ann. 65 (1918), 435-505. | Zbl 39.0099.01

[018] [19] P. Ille, L'intervalle relationnel et ses généralisations, C.R. Acad. Sc. Paris Ser. I Math. 306 (1988), 1-4. | Zbl 0654.04001

[019] [20] P. Ille, Clôture intervallaire et extension logique d'une relation, Z. Math. Logik Grundlag. Math. 36 (1990), 217-227. | Zbl 0712.03027

[020] [21] P. Ille, L'ensemble des intervalles d'une multirelation binaire et reflexive, Z. Math. Logik Grundlag. Math. 37 (1991), 227-256. | Zbl 0742.04002

[021] [22] R.M. McConnell and J.P. Spinrad, Modular decomposition and transitive orientation, Discrete Math. 201 (1999), 189-241. | Zbl 0933.05146

[022] [23] R.H. Möhring, Algorithmic aspects of the substitution decomposition in optimization over relations, set systems and Boolean functions, Ann. Oper. Res. 4 (1985), 195-225.

[023] [24] R.H. Möhring and F.J. Radermacher, Substitution decomposition of discrete structures and connections to combinatorial optimization, Ann. Discrete Math. 19 (1984), 257-355. | Zbl 0567.90073

[024] [25] G. Sabidussi, Graph derivatives, Math. Zeitschrift 76 (1961), 385-401. | Zbl 0109.16404

[025] [26] B.S.W. Schröder, Ordered Sets. An Introduction, Birkhäuser, Basel 2002.

[026] [27] M. Stern, Semimodular Lattices, Theory and Applications, Cambridge University Press, Cambridge 1999. | Zbl 0957.06008

[027] [28] W.T. Trotter, Combinatorics and Partially Ordered Sets. Dimension Theory, Johns Hopkins University Press, Baltimore, MD, 1992. | Zbl 0764.05001

[028] [29] I. Zverovich, Extension of hereditary classes with substitutions, Discrete Appl. Math. 128 (2003), 487-509. | Zbl 1021.05095