Direct decompositions of dually residuated lattice-ordered monoids
Jiří Rachůnek ; Dana Šalounová
Discussiones Mathematicae - General Algebra and Applications, Tome 24 (2004), p. 63-74 / Harvested from The Polish Digital Mathematics Library

The class of dually residuated lattice ordered monoids (DRl-monoids) contains, in an appropriate signature, all l-groups, Brouwerian algebras, MV- and GMV-algebras, BL- and pseudo BL-algebras, etc. In the paper we study direct products and decompositions of DRl-monoids in general and we characterize ideals of DRl-monoids which are direct factors. The results are then applicable to all above mentioned special classes of DRl-monoids.

Publié le : 2004-01-01
EUDML-ID : urn:eudml:doc:287751
@article{bwmeta1.element.bwnjournal-article-doi-10_7151_dmgaa_1076,
     author = {Ji\v r\'\i\ Rach\r unek and Dana \v Salounov\'a},
     title = {Direct decompositions of dually residuated lattice-ordered monoids},
     journal = {Discussiones Mathematicae - General Algebra and Applications},
     volume = {24},
     year = {2004},
     pages = {63-74},
     zbl = {1068.06016},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmgaa_1076}
}
Jiří Rachůnek; Dana Šalounová. Direct decompositions of dually residuated lattice-ordered monoids. Discussiones Mathematicae - General Algebra and Applications, Tome 24 (2004) pp. 63-74. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmgaa_1076/

[000] [1] R.L.O. Cignoli, I.M.L. D'Ottaviano and D. Mundici, Foundations of Many-valued Reasoning, Kluwer Acad. Publ., Dordrecht 2000. | Zbl 0937.06009

[001] [2] A. Di Nola, G. Georgescu and A. Iorgulescu, Pseudo BL-algebras: Part I, Multiple-Valued Logic 8 (2002), 673-714. | Zbl 1028.06007

[002] [3] P. Hájek, Metamathematics of Fuzzy Logic, Kluwer Acad. Publ., Dordrecht 1998. | Zbl 0937.03030

[003] [4] M.E. Hansen, Minimal prime ideals in autometrized algebras, Czechoslovak Math. J. 44 (119) (1994), 81-90.

[004] [5] T. Kovár, A general theory of dually residuated lattice-ordered monoids, Ph.D. Thesis, Palacký Univ., Olomouc 1996.

[005] [6] J. Kühr, Pseudo BL-algebras and DRl-monoids, Math. Bohemica 128 (2003), 199-208.

[006] [7] J. Kühr, Prime ideals and polars in DRl-monoids and pseudo BL-algebras, Math. Slovaca 53 (2003), 233-246. | Zbl 1058.06017

[007] [8] J. Kühr, Ideals of noncommutative DRl-monoids, Czechoslovak Math. J. (to appear).

[008] [9] J. Rachnek, Prime ideals in autometrized algebras, Czechoslovak Math. J. 37 (112) (1987), 65-69.

[009] [10] J. Rachnek, Polars in autometrized algebras, Czechoslovak Math. J. 39 (114) (1989), 681-685.

[010] [11] J. Rachnek, Regular ideals in autometrized algebras, Math. Slovaca 40 (1990), 117-122. | Zbl 0738.06014

[011] [12] J. Rachnek, DRl-semigroups and MV-algebras, Czechoslovak Math. J. 48 (123) (1998), 365-372.

[012] [13] J. Rachnek, MV-algebras are categorically equivalent to a class of DRl-semigroups, Math. Bohemica 123 (1998), 437-441.

[013] [14] J. Rachnek, A duality between algebras of basic logic and bounded representable DRl-monoids, Math. Bohemica 126 (2001), 561-569.

[014] [15] J. Rachnek, Polars and annihilators in representable DRl- monoids and MV-algebras, Math. Slovaca 51 (2001), 1-12. | Zbl 0986.06008

[015] [16] J. Rachnek, A non-commutative generalization of MV-algebras, Czechoslovak Math. J. 52 (127) (2002), 255-273.

[016] [17] J. Rachnek, Prime ideals and polars in generalized MV- algebras, Multiple-Valued Logic 8 (2002), 127-137.

[017] [18] J. Rachnek, Prime spectra of non-commutative generalizations of MV-algebras, Algebra Univers. 48 (2002), 151-169.

[018] [19] D. Salounová, Lex-ideals of DRl-monoids and GMV-algebras, Math. Slovaca 53 (2003), 321-330. | Zbl 1072.06009

[019] [20] K.L.N. Swamy, Dually residuated lattice-ordered semigroups I, Math. Ann. 159 (1965), 105-114. | Zbl 0135.04203

[020] [21] K.L.N. Swamy, Dually residuated lattice-ordered semigroups II, Math. Ann. 160 (1965), 64-71. | Zbl 0138.02104

[021] [22] K.L.N. Swamy, Dually residuated lattice-ordered semigroups III, Math. Ann. 167 (1966), 71-74. | Zbl 0158.02601

[022] [23] K.L.N. Swamy and N.P. Rao, Ideals in autometrized algebras, J. Austral. Math. Soc. Ser. A 24 (1977), 362-374. | Zbl 0427.06006

[023] [24] K.L.N. Swamy, and B.V. Subba Rao, Isometries in dually residuated lattice-ordered semigroups, Math. Sem. Notes Kobe Univ. 8 (1980). doi: 369-379 | Zbl 0464.06008