The class of dually residuated lattice ordered monoids (DRl-monoids) contains, in an appropriate signature, all l-groups, Brouwerian algebras, MV- and GMV-algebras, BL- and pseudo BL-algebras, etc. In the paper we study direct products and decompositions of DRl-monoids in general and we characterize ideals of DRl-monoids which are direct factors. The results are then applicable to all above mentioned special classes of DRl-monoids.
@article{bwmeta1.element.bwnjournal-article-doi-10_7151_dmgaa_1076, author = {Ji\v r\'\i\ Rach\r unek and Dana \v Salounov\'a}, title = {Direct decompositions of dually residuated lattice-ordered monoids}, journal = {Discussiones Mathematicae - General Algebra and Applications}, volume = {24}, year = {2004}, pages = {63-74}, zbl = {1068.06016}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmgaa_1076} }
Jiří Rachůnek; Dana Šalounová. Direct decompositions of dually residuated lattice-ordered monoids. Discussiones Mathematicae - General Algebra and Applications, Tome 24 (2004) pp. 63-74. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmgaa_1076/
[000] [1] R.L.O. Cignoli, I.M.L. D'Ottaviano and D. Mundici, Foundations of Many-valued Reasoning, Kluwer Acad. Publ., Dordrecht 2000. | Zbl 0937.06009
[001] [2] A. Di Nola, G. Georgescu and A. Iorgulescu, Pseudo BL-algebras: Part I, Multiple-Valued Logic 8 (2002), 673-714. | Zbl 1028.06007
[002] [3] P. Hájek, Metamathematics of Fuzzy Logic, Kluwer Acad. Publ., Dordrecht 1998. | Zbl 0937.03030
[003] [4] M.E. Hansen, Minimal prime ideals in autometrized algebras, Czechoslovak Math. J. 44 (119) (1994), 81-90.
[004] [5] T. Kovár, A general theory of dually residuated lattice-ordered monoids, Ph.D. Thesis, Palacký Univ., Olomouc 1996.
[005] [6] J. Kühr, Pseudo BL-algebras and DRl-monoids, Math. Bohemica 128 (2003), 199-208.
[006] [7] J. Kühr, Prime ideals and polars in DRl-monoids and pseudo BL-algebras, Math. Slovaca 53 (2003), 233-246. | Zbl 1058.06017
[007] [8] J. Kühr, Ideals of noncommutative DRl-monoids, Czechoslovak Math. J. (to appear).
[008] [9] J. Rachnek, Prime ideals in autometrized algebras, Czechoslovak Math. J. 37 (112) (1987), 65-69.
[009] [10] J. Rachnek, Polars in autometrized algebras, Czechoslovak Math. J. 39 (114) (1989), 681-685.
[010] [11] J. Rachnek, Regular ideals in autometrized algebras, Math. Slovaca 40 (1990), 117-122. | Zbl 0738.06014
[011] [12] J. Rachnek, DRl-semigroups and MV-algebras, Czechoslovak Math. J. 48 (123) (1998), 365-372.
[012] [13] J. Rachnek, MV-algebras are categorically equivalent to a class of DRl-semigroups, Math. Bohemica 123 (1998), 437-441.
[013] [14] J. Rachnek, A duality between algebras of basic logic and bounded representable DRl-monoids, Math. Bohemica 126 (2001), 561-569.
[014] [15] J. Rachnek, Polars and annihilators in representable DRl- monoids and MV-algebras, Math. Slovaca 51 (2001), 1-12. | Zbl 0986.06008
[015] [16] J. Rachnek, A non-commutative generalization of MV-algebras, Czechoslovak Math. J. 52 (127) (2002), 255-273.
[016] [17] J. Rachnek, Prime ideals and polars in generalized MV- algebras, Multiple-Valued Logic 8 (2002), 127-137.
[017] [18] J. Rachnek, Prime spectra of non-commutative generalizations of MV-algebras, Algebra Univers. 48 (2002), 151-169.
[018] [19] D. Salounová, Lex-ideals of DRl-monoids and GMV-algebras, Math. Slovaca 53 (2003), 321-330. | Zbl 1072.06009
[019] [20] K.L.N. Swamy, Dually residuated lattice-ordered semigroups I, Math. Ann. 159 (1965), 105-114. | Zbl 0135.04203
[020] [21] K.L.N. Swamy, Dually residuated lattice-ordered semigroups II, Math. Ann. 160 (1965), 64-71. | Zbl 0138.02104
[021] [22] K.L.N. Swamy, Dually residuated lattice-ordered semigroups III, Math. Ann. 167 (1966), 71-74. | Zbl 0158.02601
[022] [23] K.L.N. Swamy and N.P. Rao, Ideals in autometrized algebras, J. Austral. Math. Soc. Ser. A 24 (1977), 362-374. | Zbl 0427.06006
[023] [24] K.L.N. Swamy, and B.V. Subba Rao, Isometries in dually residuated lattice-ordered semigroups, Math. Sem. Notes Kobe Univ. 8 (1980). doi: 369-379 | Zbl 0464.06008