Rank and perimeter preserver of rank-1 matrices over max algebra
Seok-Zun Song ; Kyung-Tae Kang
Discussiones Mathematicae - General Algebra and Applications, Tome 23 (2003), p. 125-137 / Harvested from The Polish Digital Mathematics Library

For a rank-1 matrix A=abt over max algebra, we define the perimeter of A as the number of nonzero entries in both a and b. We characterize the linear operators which preserve the rank and perimeter of rank-1 matrices over max algebra. That is, a linear operator T preserves the rank and perimeter of rank-1 matrices if and only if it has the form T(A) = U ⊗ A ⊗ V, or T(A)=UAtV with some monomial matrices U and V.

Publié le : 2003-01-01
EUDML-ID : urn:eudml:doc:287656
@article{bwmeta1.element.bwnjournal-article-doi-10_7151_dmgaa_1068,
     author = {Seok-Zun Song and Kyung-Tae Kang},
     title = {Rank and perimeter preserver of rank-1 matrices over max algebra},
     journal = {Discussiones Mathematicae - General Algebra and Applications},
     volume = {23},
     year = {2003},
     pages = {125-137},
     zbl = {1059.15008},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmgaa_1068}
}
Seok-Zun Song; Kyung-Tae Kang. Rank and perimeter preserver of rank-1 matrices over max algebra. Discussiones Mathematicae - General Algebra and Applications, Tome 23 (2003) pp. 125-137. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmgaa_1068/

[000] [1] R.B. Bapat, A max version of the Perron-Frebenius theorem, Linear Algebra Appl. 275-276 (1998), 3-18.

[001] [2] R.B. Bapat, S. Pati and S.-Z. Song, Rank preservers of matrices over max algebra, Linear and Multilinear Algebra 48 (2000), 149-164. | Zbl 0971.15006

[002] [3] L.B. Beasley and N.J. Pullman, Boolean rank-preserving operators and Boolean rank-1 spaces, Linear Algebra Appl. 59 (1984), 55-77. | Zbl 0536.20044

[003] [4] L.B. Beasley, S.-Z. Song and S.-G. Lee, Zero term rank preservers, Linear and Multilinear Algebra 48 (2001), 313-318. | Zbl 0987.15002

[004] [5] S.-Z. Song and S.-R. Park, Maximal column rank preservers of fuzzy matrices, Discuss. Math. - Gen. Algebra Appl. 21 (2001), 207-218. | Zbl 1006.15018