Dually residuated lattice-ordered monoids (DRl-monoids) generalize lattice-ordered groups and include also some algebras related to fuzzy logic (e.g. GMV-algebras and pseudo BL-algebras). In the paper, we give some necessary and sufficient conditions for a DRl-monoid to be representable (i.e. a subdirect product of totally ordered DRl-monoids) and we prove that the class of representable DRl-monoids is a variety.
@article{bwmeta1.element.bwnjournal-article-doi-10_7151_dmgaa_1067, author = {Jan K\"uhr}, title = {Representable dually residuated lattice-ordered monoids}, journal = {Discussiones Mathematicae - General Algebra and Applications}, volume = {23}, year = {2003}, pages = {115-123}, zbl = {1066.06008}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmgaa_1067} }
Jan Kühr. Representable dually residuated lattice-ordered monoids. Discussiones Mathematicae - General Algebra and Applications, Tome 23 (2003) pp. 115-123. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmgaa_1067/
[000] [1] S. Burris and H.P. Sankappanavar, A Course in Universal Algebra, Springer-Verlag, New York 1981.
[001] [2] A. Di Nola, G. Georgescu, and A. Iorgulescu, Pseudo BL-algebras: Part I, Mult.-Valued Logic 8 (2002), 673-714. | Zbl 1028.06007
[002] [3] A. Di Nola, G. Georgescu, and A. Iorgulescu, Pseudo BL-algebras: Part II, Mult.-Valued Logic 8 (2002), 717-750. | Zbl 1028.06008
[003] [4] A. Dvurecenskij, On pseudo MV-algebras, Soft Comput. 5 (2001), 347-354. | Zbl 0998.06010
[004] [5] A. Dvurecenskij, States on pseudo MV-algebras, Studia Logica 68 (2001), 301-327. | Zbl 0999.06011
[005] [6] G. Georgescu, and A. Iorgulescu, Pseudo MV- algebras, Mult.-Valued Logic 6 (2001), 95-135. | Zbl 1014.06008
[006] [7] A.M.W. Glass, Partially Ordered Groups, World Scientific, Singapore-New Jersey-London-Hong Kong 1999. | Zbl 0933.06010
[007] [8] G. Grätzer, General Lattice Theory, Birkhäuser, Basel-Boston-Berlin 1998. | Zbl 0909.06002
[008] [9] M.E. Hansen, Minimal prime ideals in autometrized algebras, Czechoslovak Math. J. 44 (119) (1994), 81-90. | Zbl 0814.06011
[009] [10] T. Kovár, A general theory of dually residuated lattice-ordered monoids, Ph.D. thesis, Palacký University, Olomouc 1996.
[010] [11] T. Kovár, Two remarks on dually residuated lattice-ordered semigroups, Math. Slovaca 49 (1999), 17-18. | Zbl 0943.06007
[011] [12] J. Kühr, Ideals of non-commutative DRl-monoids, Czechoslovak Math. J., to appear.
[012] [13] J. Kühr, Pseudo BL-algebras and DRl-monoids, Math. Bohem. 128 (2003), 199-208. | Zbl 1024.06005
[013] [14] J. Kühr, Prime ideals and polars in DRl-monoids and pseudo BL-algebras, Math. Slovaca 53 (2003), 233-246. | Zbl 1058.06017
[014] [15] J. Rach unek, MV-algebras are categorically equivalent to a class of DRl1(i)-semigroups, Math. Bohem. 123 (1998), 437-441.
[015] [16] J. Rach unek, A duality between algebras of basic logic and bounded representable DRl-monoids, Math. Bohem. 126 (2001), 561-569.
[016] [17] J. Rach unek, A non-commutative generalization of MV-algebras, Czechoslovak Math. J. 52 (127) (2002), 255-273.
[017] [18] K.L.N. Swamy, Dually residuated lattice-ordered semigroups. I, Math. Ann. 159 (1965), 105-114. | Zbl 0135.04203
[018] [19] K.L.N. Swamy, Dually residuated lattice-ordered semigroups. III, Math. Ann. 167 (1966), 71-74. | Zbl 0158.02601