By dealing with absolute retracts of l-groups we use a definition analogous to that applied by Halmos for the case of Boolean algebras. The main results of the present paper concern absolute convex retracts in the class of all archimedean l-groups and in the class of all complete l-groups.
@article{bwmeta1.element.bwnjournal-article-doi-10_7151_dmgaa_1061, author = {J\'an Jakub\'\i k}, title = {On absolute retracts and absolute convex retracts in some classes of l-groups}, journal = {Discussiones Mathematicae - General Algebra and Applications}, volume = {23}, year = {2003}, pages = {19-30}, zbl = {1057.06008}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmgaa_1061} }
Ján Jakubík. On absolute retracts and absolute convex retracts in some classes of l-groups. Discussiones Mathematicae - General Algebra and Applications, Tome 23 (2003) pp. 19-30. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmgaa_1061/
[000] [1] P. Conrad, Lattice Ordered Groups, Tulane University, New Orleans, LA, 1970. | Zbl 0258.06011
[001] [2] P. Conrad, The essential closure of an archimedean lattice-ordered group, Duke Math. J. 38 (1971), 151-160. | Zbl 0216.03104
[002] [3] P. Halmos, Injective and projective Boolean algebras, 'Lattice Theory' (R.P. Dilworth, editor), Amer. Math. Soc., Providence, RI,1961, 114-122.
[003] [4] J. Jakubík, Splitting property of lattice ordered groups, Czechoslovak Math. J. 24 (1974), 257-269. | Zbl 0327.06013
[004] [5] J. Jakubík, Orthogonal hull of a strongly projectable lattice ordered group, Czechoslovak Math. J. 28 (1978), 484-504. | Zbl 0391.06014
[005] [6] J. Jakubík, Retracts of abelian cyclically ordered groups, Archivum Math. (Brno) 25 (1989), 13-18. | Zbl 0712.06013
[006] [7] J. Jakubík, Retracts of abelian lattice ordered groups, Czechoslovak Math. J. 39 (1989), 477-489. | Zbl 0691.06009
[007] [8] J. Jakubík, Retract varieties of lattice ordered groups, Czechoslovak Math. J. 40 (1990), 104-112. | Zbl 0705.06011