A diagrammatic statement is developed for the generalized semidistributive law in case of single algebras assuming that their congruences are permutable. Without permutable congruences, a diagrammatic statement is developed for the ∧-semidistributive law.
@article{bwmeta1.element.bwnjournal-article-doi-10_7151_dmgaa_1060, author = {Ivan Chajda and Eszter K. Horv\'ath}, title = {A scheme for congruence semidistributivity}, journal = {Discussiones Mathematicae - General Algebra and Applications}, volume = {23}, year = {2003}, pages = {13-18}, zbl = {1057.08001}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmgaa_1060} }
Ivan Chajda; Eszter K. Horváth. A scheme for congruence semidistributivity. Discussiones Mathematicae - General Algebra and Applications, Tome 23 (2003) pp. 13-18. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmgaa_1060/
[000] [1] I. Chajda, G. Eigenthaler and H. Länger, Congruence Classes in Universal Algebra, Heldermann Verlag, Lemgo 2003. | Zbl 1014.08001
[001] [2] I. Chajda and E.K. Horváth, A triangular scheme for congruence distributivity, Acta Sci. Math. (Szeged) 68 (2002), 29-35. | Zbl 0997.08001
[002] [3] G. Czédli, Weak congruence semidistributivity laws and their conjugates, Acta Math. Univ. Comenian. 68 (1999), 153-170. | Zbl 0929.08005
[003] [4] W. Geyer, Generalizing semidistributivity, Order 10 (1993), 77-92. | Zbl 0813.06007
[004] [5] H.P. Gumm, Geometrical methods in congruence modular algebras, Mem. Amer. Math. Soc. 45 (1983), no. 286, viii+79 pp. | Zbl 0547.08006
[005] [6] K.A. Kearnes and Á. Szendrei, The relationship between two commutators, Internat. J. Algebra Comput. 8 (1998), 497-53. | Zbl 0923.08001
[006] [7] P. Lipparini, Characterization of varieties with a difference term, II: neutral = meet semidistributive, Canadian Math. Bull. 41 (1988), 318-327. | Zbl 0909.08007