Quasi-implication algebras
Ivan Chajda ; Kamil Dušek
Discussiones Mathematicae - General Algebra and Applications, Tome 22 (2002), p. 183-198 / Harvested from The Polish Digital Mathematics Library

A quasi-implication algebra is introduced as an algebraic counterpart of an implication reduct of propositional logic having non-involutory negation (e.g. intuitionistic logic). We show that every pseudocomplemented semilattice induces a quasi-implication algebra (but not conversely). On the other hand, a more general algebra, a so-called pseudocomplemented q-semilattice is introduced and a mutual correspondence between this algebra and a quasi-implication algebra is shown.

Publié le : 2002-01-01
EUDML-ID : urn:eudml:doc:287650
@article{bwmeta1.element.bwnjournal-article-doi-10_7151_dmgaa_1057,
     author = {Ivan Chajda and Kamil Du\v sek},
     title = {Quasi-implication algebras},
     journal = {Discussiones Mathematicae - General Algebra and Applications},
     volume = {22},
     year = {2002},
     pages = {183-198},
     zbl = {1028.03050},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmgaa_1057}
}
Ivan Chajda; Kamil Dušek. Quasi-implication algebras. Discussiones Mathematicae - General Algebra and Applications, Tome 22 (2002) pp. 183-198. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmgaa_1057/

[000] [1] J.C. Abbott, Semi-boolean algebras, Mat. Vesnik 4 (1967), 177-198. | Zbl 0153.02704

[001] [2] R. Balbes, On free pseudo-complemented and relatively pseudo-complemented semi-lattices, Fund. Math. 78 (1973), 119-131. | Zbl 0277.06001

[002] [3] I. Chajda, Semi-implication algebra, Tatra Mt. Math. Publ. 5 (1995), 13-24. | Zbl 0856.08004

[003] [4] I. Chajda, An extension of relative pseudocomplementation to non-distributive lattices, Acta Sci. Math. (Szeged), to appear. | Zbl 1048.06005

[004] [5] A. Diego, Sur les algèbres de Hilbert, Gauthier-Villars, Paris 1966, (viii+55pp.).

[005] [6] O. Frink, Pseudo-complements in semi-lattices, Duke Math. J. 29 (1962), 505-514. | Zbl 0114.01602