A quasi-implication algebra is introduced as an algebraic counterpart of an implication reduct of propositional logic having non-involutory negation (e.g. intuitionistic logic). We show that every pseudocomplemented semilattice induces a quasi-implication algebra (but not conversely). On the other hand, a more general algebra, a so-called pseudocomplemented q-semilattice is introduced and a mutual correspondence between this algebra and a quasi-implication algebra is shown.
@article{bwmeta1.element.bwnjournal-article-doi-10_7151_dmgaa_1057, author = {Ivan Chajda and Kamil Du\v sek}, title = {Quasi-implication algebras}, journal = {Discussiones Mathematicae - General Algebra and Applications}, volume = {22}, year = {2002}, pages = {183-198}, zbl = {1028.03050}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmgaa_1057} }
Ivan Chajda; Kamil Dušek. Quasi-implication algebras. Discussiones Mathematicae - General Algebra and Applications, Tome 22 (2002) pp. 183-198. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmgaa_1057/
[000] [1] J.C. Abbott, Semi-boolean algebras, Mat. Vesnik 4 (1967), 177-198. | Zbl 0153.02704
[001] [2] R. Balbes, On free pseudo-complemented and relatively pseudo-complemented semi-lattices, Fund. Math. 78 (1973), 119-131. | Zbl 0277.06001
[002] [3] I. Chajda, Semi-implication algebra, Tatra Mt. Math. Publ. 5 (1995), 13-24. | Zbl 0856.08004
[003] [4] I. Chajda, An extension of relative pseudocomplementation to non-distributive lattices, Acta Sci. Math. (Szeged), to appear. | Zbl 1048.06005
[004] [5] A. Diego, Sur les algèbres de Hilbert, Gauthier-Villars, Paris 1966, (viii+55pp.).
[005] [6] O. Frink, Pseudo-complements in semi-lattices, Duke Math. J. 29 (1962), 505-514. | Zbl 0114.01602