An inverse matrix of an upper triangular matrix can be lower triangular
Waldemar Hołubowski
Discussiones Mathematicae - General Algebra and Applications, Tome 22 (2002), p. 161-166 / Harvested from The Polish Digital Mathematics Library

In this note we explain why the group of n×n upper triangular matrices is defined usually over commutative ring while the full general linear group is defined over any associative ring.

Publié le : 2002-01-01
EUDML-ID : urn:eudml:doc:287665
@article{bwmeta1.element.bwnjournal-article-doi-10_7151_dmgaa_1055,
     author = {Waldemar Ho\l ubowski},
     title = {An inverse matrix of an upper triangular matrix can be lower triangular},
     journal = {Discussiones Mathematicae - General Algebra and Applications},
     volume = {22},
     year = {2002},
     pages = {161-166},
     zbl = {1031.15006},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmgaa_1055}
}
Waldemar Hołubowski. An inverse matrix of an upper triangular matrix can be lower triangular. Discussiones Mathematicae - General Algebra and Applications, Tome 22 (2002) pp. 161-166. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmgaa_1055/

[000] [1] H. Anton and C. Rorres, Elementary Linear algebra. Applications version, 8-th edition, J. Wiley, New York 2000.

[001] [2] C.M. Bang, A condition for two matrices to be inverses of each other, Amer. Math. Monthly (1974), 764-767. | Zbl 0293.15004

[002] [3] I.D. Ion and M. Constantinescu, Sur les anneaux Dedekind-finis, Italian J. Pure Appl. Math. 7 (2000), 19-25. | Zbl 0971.16016

[003] [4] N. Jacobson, Structure of rings, Amer. Math. Soc., RI, Providence 1956.

[004] [5] M.I. Kargapolov and Yu. I. Merzlakov, Fundamentals of the theory of groups, Springer-Verlag, New York 1979.

[005] [6] D.J.S. Robinson, A course in the theory of groups, Springer-Verlag, New York 1982. | Zbl 0483.20001

[006] [7] A. Stepanov and N. Vavilov, Decomposition of transvections: a theme with variations, K- Theory 19 (2000), 109-153. | Zbl 0944.20031