Frobenius algebras play an important role in the representation theory of finite groups. In the present work, we investigate the (quasi) Frobenius property of n-group algebras. Using the (quasi-) Frobenius property of ring, we can obtain some information about constructions of module category over this ring ([2], p. 66-67).
@article{bwmeta1.element.bwnjournal-article-doi-10_7151_dmgaa_1054, author = {Biljana Zekovi\'c}, title = {Frobenius n-group algebras}, journal = {Discussiones Mathematicae - General Algebra and Applications}, volume = {22}, year = {2002}, pages = {153-159}, zbl = {1039.20039}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmgaa_1054} }
Biljana Zeković. Frobenius n-group algebras. Discussiones Mathematicae - General Algebra and Applications, Tome 22 (2002) pp. 153-159. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmgaa_1054/
[000] [1] V.A. Artamonov, Free n-groups (Russian), Mat. Zametki 8 (1970), 499-507.
[001] [2] L.A. Bokut, I.V. L'vov and V.K. Kharchenko, Nonkommutative Rings (Russian), vol. 18 of 'Itogi Nauki i Tekhniki', Izdat. VINITI, Moscov 1988.
[002] [3] A.G. Kurosh, General Algebra. - Lectures of the 1969-1970 Academic Year (Russian), Izdat, 'Nauka', Moscov 1974. | Zbl 0289.00004
[003] [4] E.L. Post, Polyadic groups, Trans. Amer. Math. Soc. 48 (1940), 208-350. | Zbl 66.0099.01
[004] [5] B. Zeković and V.A. Artamonov, n-Group rings and their radicals (Russian), Abelian Groups and Modules (Tomsk), 11 (1992), 3-7 (in Russian).
[005] [6] B. Zeković and V.A. Artamonov, Connections betweem some properties of n-group rings and group rings (Russian), Math. Montisnigri 11 (1999), 151-158. | Zbl 0972.16014