On the lattice of additive hereditary properties of finite graphs
Ján Jakubík
Discussiones Mathematicae - General Algebra and Applications, Tome 22 (2002), p. 73-86 / Harvested from The Polish Digital Mathematics Library

In this paper it is proved that the lattice of additive hereditary properties of finite graphs is completely distributive and that it does not satisfy the Jordan-Dedekind condition for infinite chains.

Publié le : 2002-01-01
EUDML-ID : urn:eudml:doc:287681
@article{bwmeta1.element.bwnjournal-article-doi-10_7151_dmgaa_1048,
     author = {J\'an Jakub\'\i k},
     title = {On the lattice of additive hereditary properties of finite graphs},
     journal = {Discussiones Mathematicae - General Algebra and Applications},
     volume = {22},
     year = {2002},
     pages = {73-86},
     zbl = {1032.06003},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmgaa_1048}
}
Ján Jakubík. On the lattice of additive hereditary properties of finite graphs. Discussiones Mathematicae - General Algebra and Applications, Tome 22 (2002) pp. 73-86. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmgaa_1048/

[000] [1] G. Birkhoff, Lattice Theory, (the 3-rd ed.), Amer. Math. Soc., Providence, RI, 1967.

[001] [2] M. Borowiecki, I. Broere, M. Frick, P. Mihók, and G. Semanisin, A survey of hereditary properties of graphs, Discussiones Math.- Graph Theory 17 (1997), 5-50. | Zbl 0902.05026

[002] [3] M. Borowiecki and P. Mihók, Hereditary properties of graphs, 'Advances in Graph Theory', Vishwa International Publications, Gulbarga 1991, 41-68.

[003] [4] G. Grätzer and E. T. Schmidt, On the Jordan-Dedekind chain condition, Acta Sci. Math. 18 (1957), 52-56. | Zbl 0079.04501

[004] [5] J. Jakubík, On the Jordan-Dedekind chain condition, Acta Sci. Math. 16 (1955), 266-269. | Zbl 0065.26602

[005] [6] J. Jakubík, A remark on the Jordan-Dedekind chain condition in Boolean algebras (Slovak), Casopis Pest. Mat. 82 (1957), 44-46.

[006] [7] J. Jakubík, On chains in Boolean algebras (Slovak), Mat. Fyz. Casopis SAV 8 (1958), 193-202. | Zbl 0086.25302

[007] [8] J. Jakubí k, Die Jordan-Dedekindsche Bedingung im direkten Produkt von geordneten Mengen, Acta Sci. Math. 24 (1963), 20-23. | Zbl 0118.02203

[008] [9] P. Mihók, On graphs critical with respect to generalized independence numbers, Colloq. Math. Soc. J. Bolyai 52 (1987), 417-421.

[009] [10] G.N. Raney, Completely distributive complete lattices, Proc. Amer. Math. Soc. 3 (1952), 677-680. | Zbl 0049.30304

[010] [11] G.N. Raney, A subdirect-union representation for completely distributive lattices, Proc. Amer. Math. Soc. 4 (1952), 518-522. | Zbl 0053.35201

[011] [12] G.N. Raney, Tight Galois connection and complete distributivity, Trans. Amer. Math. Soc. 97 (1960), 418-426. | Zbl 0098.02703

[012] [13] R. Sikorski, Boolean Algebras (the second edition), Springer-Verlag, Berlin 1964.

[013] [14] G. Szász, Generalization of a theorem of Birkhoff concerning maximal chains of a certain type of lattices, Acta Sci. Math. 16 (1955), 89-91. | Zbl 0064.02904