The aim of the paper is to show that if S(G) is distributive, and also G satisfies some additional condition, then the union of any two subgroupoids of G is also a subgroupoid (intuitively, G has to be in some sense a unary algebra).
@article{bwmeta1.element.bwnjournal-article-doi-10_7151_dmgaa_1044, author = {Konrad Pi\'oro}, title = {On some finite groupoids with distributive subgroupoid lattices}, journal = {Discussiones Mathematicae - General Algebra and Applications}, volume = {22}, year = {2002}, pages = {25-31}, zbl = {1033.20076}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmgaa_1044} }
Konrad Pióro. On some finite groupoids with distributive subgroupoid lattices. Discussiones Mathematicae - General Algebra and Applications, Tome 22 (2002) pp. 25-31. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmgaa_1044/
[000] [1] G. Grätzer, General Lattice Theory, Akademie-Verlag, Berlin 1978. | Zbl 0436.06001
[001] [2] T. Evans and B. Ganter, Varieties with modular subalgebra lattices, Bull. Austr. Math. Soc. 28 (1983), 247-254. | Zbl 0545.08010
[002] [3] E.W. Kiss and M.A. Valeriote, Abelian algebras and the Hamiltonian property, J. Pure Appl. Algebra 87 (1993), 37-49. | Zbl 0779.08004
[003] [4] P.P. Pálfy, Modular subalgebra lattices, Algebra Universalis 27 (1990), 220-229. | Zbl 0708.08002
[004] [5] D. Sachs, The lattice of subalgebras of a Boolean algebra, Canad. J. Math. 14 (1962), 451-460. | Zbl 0105.25204