The notion of a half lc-group G is a generalization of the notion of a half linearly ordered group. A completion of G by means of Dedekind cuts in linearly ordered sets and applying Świerczkowski's representation theorem of lc-groups is constructed and studied.
@article{bwmeta1.element.bwnjournal-article-doi-10_7151_dmgaa_1043, author = {\v Stefan \v Cern\'ak}, title = {Completion of a half linearly cyclically ordered group}, journal = {Discussiones Mathematicae - General Algebra and Applications}, volume = {22}, year = {2002}, pages = {5-23}, zbl = {1038.06008}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmgaa_1043} }
Štefan Černák. Completion of a half linearly cyclically ordered group. Discussiones Mathematicae - General Algebra and Applications, Tome 22 (2002) pp. 5-23. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmgaa_1043/
[000] [1] Š. Černák, On the completion of cyclically ordered groups, Math. Slovaca 41 (1991), 41-49. | Zbl 0771.06007
[001] [2] M. Giraudet and F. Lucas, Groupes à moitié ordonnés, Fund. Math. 139 (1991), 75-89.
[002] [3] J. Jakubík, On half cyclically ordered groups, Czechoslovak Math. J. (to appear). | Zbl 1010.06013
[003] [4] J. Jakubík and Š. Černák, Completion of a cyclically ordered group, Czechoslovak Math. J. 37 (112) (1987), 157-174. | Zbl 0624.06021
[004] [5] V. Novák, Cuts in cyclically ordered sets, Czechoslovak Math. J. 34 (109) (1984), 322-333. | Zbl 0551.06002
[005] [6] V. Novák and M. Novotný, On completion of cyclically ordered sets, Czechoslovak Math. J. 37 (112) (1987), 407-414. | Zbl 0636.06004
[006] [7] A. Quilliot, Cyclic orders, Europan J. Combin. 10 (1989), 477-488. | Zbl 0692.05059
[007] [8] L. Rieger, On ordered and cyclically ordered groups. I, II, and III, (Czech), Věstník Královské České Společnosti Nauk. Třida Matemat.-Přirodovĕd. 1946, no. 6, p. 1-31, 1947, no 1, p. 1-33, 1948, no. 1, p. 1-26.
[008] [9] S. Świerczkowski, On cyclically ordered groups, Fundamenta Math. 47 (1959), 161-166. | Zbl 0096.01501