The lattice of subvarieties of the biregularization of the variety of Boolean algebras
Jerzy Płonka
Discussiones Mathematicae - General Algebra and Applications, Tome 21 (2001), p. 255-268 / Harvested from The Polish Digital Mathematics Library

Let τ: F → N be a type of algebras, where F is a set of fundamental operation symbols and N is the set of all positive integers. An identity φ ≈ ψ is called biregular if it has the same variables in each of it sides and it has the same fundamental operation symbols in each of it sides. For a variety V of type τ we denote by Vb the biregularization of V, i.e. the variety of type τ defined by all biregular identities from Id(V). Let B be the variety of Boolean algebras of type τb:+,·,´N, where τb(+)=τb(·)=2 and τb(´)=1. In this paper we characterize the lattice (Bb) of all subvarieties of the biregularization of the variety B.

Publié le : 2001-01-01
EUDML-ID : urn:eudml:doc:287674
@article{bwmeta1.element.bwnjournal-article-doi-10_7151_dmgaa_1042,
     author = {Jerzy P\l onka},
     title = {The lattice of subvarieties of the biregularization of the variety of Boolean algebras},
     journal = {Discussiones Mathematicae - General Algebra and Applications},
     volume = {21},
     year = {2001},
     pages = {255-268},
     zbl = {1005.08002},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmgaa_1042}
}
Jerzy Płonka. The lattice of subvarieties of the biregularization of the variety of Boolean algebras. Discussiones Mathematicae - General Algebra and Applications, Tome 21 (2001) pp. 255-268. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmgaa_1042/

[000] [1] S. Burris and H.P. Sankappanavar, A Course in Universal Algebra, Springer-Verlag, New York-Heidelberg-Berlin 1981. | Zbl 0478.08001

[001] [2] I. Chajda, Normally presented varieties, Algebra Universalis 34 (1995), 327-335. | Zbl 0842.08007

[002] [3] I. Chajda and K. Gazek, A Basic Course on General Algebra, TechnicalUniversity Press, Zielona Góra 2000.

[003] [4] G. Grätzer, Universal Algebra (2nd edition), Springer-Verlag, New York-Heidelberg-Berlin 1979.

[004] [5] B. Jónsson and E. Nelson, Relatively free products in regular varieties, Algebra Universalis 4 (1974), 14-19. | Zbl 0319.08002

[005] [6] H. Lakser, R. Padmanabhan and C.R. Platt, Subdirect decomposition of Płonka sums, Duke Math. J. 39 (1972), 485-488. | Zbl 0248.08007

[006] [7] R. McKenzie, G. McNulty and W. Taylor, Algebras, Lattices, Varieties, vol. 1, Wadsworth & Brooks/Cole Advanced Books & Software, Monterey, California 1987.

[007] [8] J. Płonka, On a method of construction of abstract algebras, Fund. Math. 61 (1967), 183-189. | Zbl 0168.26701

[008] [9] J. Płonka, On equational classes of abstract algebras defined by regular equations, Fund. Math. 64 (1969), 241-247. | Zbl 0187.28702

[009] [10] J. Płonka, Biregular and uniform identities of bisemilattices, Demonstratio Math. 20 (1987), 95-107. | Zbl 0679.08005

[010] [11] J. Płonka, On varieties of algebras defined by identities of some special forms, Houston J. Math. 14 (1988), 253-263. | Zbl 0669.08006

[011] [12] J. Płonka, Biregular and uniform identities of algebras, Czechoslovak Math. J. 40 (115) (1990), 367-387. | Zbl 0728.08005

[012] [13] J. Płonka, Subdirect decompositions of algebras from 2-clone extension of varieties, Colloq. Math 77 (1998), 189-199. | Zbl 0952.08004

[013] [14] J. Płonka, On n-clone extensions of algebras, Algebra Universalis 40 (1998), 1-17. | Zbl 0935.08001

[014] [15] J. Płonka, Free algebras over biregularization of varieties, Acta Appl. Math. 52 (1998), 305-313. | Zbl 0911.08004

[015] [16] J. Płonka, On sums of direct systems of Boolean algebras, Colloq. Math. 20 (1969), 209-214. | Zbl 0186.30802

[016] [17] J. Płonka, Lattices of subvarieties of the clone extension of some varieties, Contributions to General Algebra 11 (1999), 161-171. | Zbl 0930.08006

[017] [18] J. Płonka, Clone networks, clone extensions and biregularizations of varieties of algebras, Algebra Colloq. 8 (2001), 327-344. | Zbl 0987.08006

[018] [19] J. Płonka. and Z. Szylicka, Subdirectly irreducible generalized sums of upper semilattice ordered systems of algebras, Algebra Universalis (in print). | Zbl 1065.08007