Minimal formations of universal algebras
Wenbin Guo ; K.P. Shum
Discussiones Mathematicae - General Algebra and Applications, Tome 21 (2001), p. 201-205 / Harvested from The Polish Digital Mathematics Library

A class ℱ of universal algebras is called a formation if the following conditions are satisfied: 1) Any homomorphic image of A ∈ ℱ is in ℱ; 2) If α₁, α₂ are congruences on A and A/αi, i = 1,2, then A/(α₁∩α₂) ∈ ℱ. We prove that any formation generated by a simple algebra with permutable congruences is minimal, and hence any formation containing a simple algebra, with permutable congruences, contains a minimum subformation. This result gives a partial answer to an open problem of Shemetkov and Skiba on formations of finite universal algebras proposed in 1989.

Publié le : 2001-01-01
EUDML-ID : urn:eudml:doc:287759
@article{bwmeta1.element.bwnjournal-article-doi-10_7151_dmgaa_1037,
     author = {Wenbin Guo and K.P. Shum},
     title = {Minimal formations of universal algebras},
     journal = {Discussiones Mathematicae - General Algebra and Applications},
     volume = {21},
     year = {2001},
     pages = {201-205},
     zbl = {1059.08007},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmgaa_1037}
}
Wenbin Guo; K.P. Shum. Minimal formations of universal algebras. Discussiones Mathematicae - General Algebra and Applications, Tome 21 (2001) pp. 201-205. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmgaa_1037/

[000] [1] L.A. Artamonov, V.N. Sali, L.A. Skorniakov, L.N. Shevrin and E.G. Shulgeifer, General Algebra (Russian), vol. II, Izd. 'Nauka', Moscow 1991.

[001] [2] D.W. Barnes, Saturated formations of soluable Lie algebras in characteristic zero, Arch. Math., 30 (1978), 477-480. | Zbl 0365.17007

[002] [3] D.W. Barnes and H.M. Gastineau-Hills, On the theory of soluble Lie algebras, Math. Z., 106 (1969), 343-353. | Zbl 0164.03701

[003] [4] K. Doerk and T.O. Hawkes, Finite soluable groups, Walter de Gruyter & Co., Berlin 1992. | Zbl 0753.20001

[004] [5] A.I. Mal˘cev, Algebraic systems (Russian), Izd. 'Nauka', Moscow 1970.

[005] [6] L.A. Shemetkov, Formations of finite groups (Russian), Izd. 'Nauka', Moscow 1978.

[006] [7] L.A. Shemetkov, The product of any formation of algebraic systems (Russian), Algebra i Logika, 23 (1984), 721-729. (English transl.: Algebra and Logic 23 (1985), 489-490). | Zbl 0573.08007

[007] [8] L.A. Shemetkov and A.N. Skiba, Formations of algebraic systems (Russian), Izd. 'Nauka', Moscow 1989. | Zbl 0667.08001