On the special context of independent sets
Vladimír Slezák
Discussiones Mathematicae - General Algebra and Applications, Tome 21 (2001), p. 115-122 / Harvested from The Polish Digital Mathematics Library

In this paper the context of independent sets JLp is assigned to the complete lattice (P(M),⊆) of all subsets of a non-empty set M. Some properties of this context, especially the irreducibility and the span, are investigated.

Publié le : 2001-01-01
EUDML-ID : urn:eudml:doc:287693
@article{bwmeta1.element.bwnjournal-article-doi-10_7151_dmgaa_1032,
     author = {Vladim\'\i r Slez\'ak},
     title = {On the special context of independent sets},
     journal = {Discussiones Mathematicae - General Algebra and Applications},
     volume = {21},
     year = {2001},
     pages = {115-122},
     zbl = {0997.06003},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmgaa_1032}
}
Vladimír Slezák. On the special context of independent sets. Discussiones Mathematicae - General Algebra and Applications, Tome 21 (2001) pp. 115-122. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmgaa_1032/

[000] [1] V. Dlab, Lattice formulation of general algebraic dependence, Czechoslovak Math. Journal 20 (1970), 603-615. | Zbl 0247.06006

[001] [2] B. Ganter, R. Wille, Formale Begriffsanalyse - Mathematische Grundlagen, Springer-Verlag, Berlin 1996. (English version: 1999).

[002] [3] K. Głazek, Some old and new problems in the independence theory, Colloq. Math. 42 (1979), 127-189. | Zbl 0432.08001

[003] [4] G. Gratzer, General Lattice Theory, Birkhäuser-Verlag, Basel 1998. | Zbl 0909.06002

[004] [5] F. Machala, Incidence structures of independent sets, Acta Univ. Palacki Olomuc., Fac. Rerum Natur., Math. 38 (1999), 113-118. | Zbl 0974.08001

[005] [6] F. Machala, Join-independent and meet-independent sets in complete lattices, Order (submitted). | Zbl 1009.06005

[006] [7] E. Marczewski, Concerning the independence in lattices, Colloq. Math. 10 (1963), 21-23. | Zbl 0122.25802

[007] [8] V. Slezák, Span in incidence structures defined on projective spaces, Acta Univ. Palack. Olomuc., Fac. Rerum Natur., Mathematica 39 (2000), 191-202. | Zbl 1039.08001

[008] [9] G. Szász, Introduction to Lattice Theory, Akadémiai Kiadó, Budapest 1963.

[009] [10] G. Szász, Marczewski independence in lattices and semilattices, Colloq. Math. 10 (1963), 15-20. | Zbl 0118.02401