It is shown that in the variety of orthomodular lattices every hypersubstitution respecting all absorption laws either leaves the lattice operations unchanged or interchanges join and meet. Further, in a variety of lattices with an involutory antiautomorphism a semigroup generated by three involutory hypersubstitutions is described.
@article{bwmeta1.element.bwnjournal-article-doi-10_7151_dmgaa_1029, author = {Ivan Chajda and Helmut L\"anger}, title = {Hypersubstitutions in orthomodular lattices}, journal = {Discussiones Mathematicae - General Algebra and Applications}, volume = {21}, year = {2001}, pages = {83-92}, zbl = {0996.08003}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmgaa_1029} }
Ivan Chajda; Helmut Länger. Hypersubstitutions in orthomodular lattices. Discussiones Mathematicae - General Algebra and Applications, Tome 21 (2001) pp. 83-92. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmgaa_1029/
[000] [1] I. Chajda and K. Głazek, A Basic Course on General Algebra, Technical University Press, Zielona Góra 2000. | Zbl 0970.08001
[001] [2] K. Denecke, D. Lau, R. Pöschel, and D. Schweigert, Hyperidentities, hyperequational classes and clone congruences, Contribution to General Algebra 7 (1991), 97-118. | Zbl 0759.08005
[002] [3] E. Graczyńska and D. Schweigert, Hypervarieties of a given type, Algebra Universalis 27 (1990), 305-318. | Zbl 0715.08002
[003] [4] R. Padmanabhan and P. Penner, Bases of hyperidentities of lattices, C.R. Math. Rep. Acad. Sci. Canada 4 (1982), 9-14. | Zbl 0478.06004
[004] [5] J. Płonka, Proper and inner hypersubstitutions of varieties, 'General Algebra and Ordered Sets (Horni Lipová 1994)', Palacký University, Olomouc 1994, 106-115.
[005] [6] J. Płonka, On hyperidentities of some varieties, 'General Algebra and Discrete Mathematics (Potsdam 1993)', Heldermann-Verlag, Lemgo 1995, 199-213. | Zbl 0813.08004
[006] [7] Z. Szylicka, Proper hypersubstitutions of normalizations and externalizations of varieties, 'General Algebra and Ordered Sets (Horni Lipová 1994)', Palacký University, Olomouc 1994, 144-155. | Zbl 0828.08004
[007] [8] W. Taylor, Hyperidentities and hypervarieties, Aequationes Math. 23 (1981), 30-49. | Zbl 0491.08009