We prove that the set of all n-ary endomorphisms of an abelian m-ary group forms an (m,n)-ring.
@article{bwmeta1.element.bwnjournal-article-doi-10_7151_dmgaa_1026, author = {Alexander M. Gal'mak}, title = {Generalized morphisms of abelian m-ary groups}, journal = {Discussiones Mathematicae - General Algebra and Applications}, volume = {21}, year = {2001}, pages = {47-55}, zbl = {1022.20037}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmgaa_1026} }
Alexander M. Gal'mak. Generalized morphisms of abelian m-ary groups. Discussiones Mathematicae - General Algebra and Applications, Tome 21 (2001) pp. 47-55. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmgaa_1026/
[000] [1] G. Crombez, On (n, m)-rings, Abh. Math. Sem. Univ. Hamburg 37 (1972), 180-199. | Zbl 0247.08001
[001] [2] A.M. Gal'mak, Generalized morphisms of algebraic systems (Russian), Voprosy Algebry 12 (1998), 36-46.
[002] [3] K. Głazek, Bibliography of n-groups (polyadic groups) and some group-like n-ary systems, 'Proc. Symp. on n-ary Structures (Skopje 1982)', Macedonian Academy of Sciences and Arts, Skopje 1982, 253-289. | Zbl 0582.20057
[003] [4] K. Głazek and B. Gleichgewicht, Abelian n-groups, Colloq. Math. Soc. J. Bolyai, no. 29 ('Universal Algebra, Esztergom (Hungary) 1977'), North-Holland, Amsterdam 1981, 321-329.
[004] [5] E.L. Post, Polyadic groups, Trans. Amer. Math. Soc. 48 (1940), 208-350. | Zbl 66.0099.01
[005] [6] S.A. Rusakov, Sequences of mappings and the existence of symmetric n-ary groups (Russian), 'The Arithmetic and Subgroup Structure of Finite Groups' (Russian), Navuka i Tehnika, Minsk 1986, 120-134.
[006] [7] S.A. Rusakov, Algebraic n-ary systems (Russian), Navuka i Tehnika, Minsk 1992.
[007] [8] J. Timm, Kommutative n-Gruppen, Dissertation, Univ. Hamburg 1967.