The maximal column rank of an m by n matrix is the maximal number of the columns of A which are linearly independent. We compare the maximal column rank with rank of matrices over a nonbinary Boolean algebra. We also characterize the linear operators which preserve the maximal column ranks of matrices over nonbinary Boolean algebra.
@article{bwmeta1.element.bwnjournal-article-doi-10_7151_dmgaa_1021, author = {Seok-Zun Song and Sung-Dae Yang and Sung-Min Hong and Young-Bae Jun and Seon-Jeong Kim}, title = {Linear operators preserving maximal column ranks of nonbinary boolean matrices}, journal = {Discussiones Mathematicae - General Algebra and Applications}, volume = {20}, year = {2000}, pages = {255-265}, zbl = {0983.20061}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmgaa_1021} }
Seok-Zun Song; Sung-Dae Yang; Sung-Min Hong; Young-Bae Jun; Seon-Jeong Kim. Linear operators preserving maximal column ranks of nonbinary boolean matrices. Discussiones Mathematicae - General Algebra and Applications, Tome 20 (2000) pp. 255-265. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmgaa_1021/
[000] [1] L.B. Beasley and N.J. Pullman, Boolean rank-preserving operators and Boolean rank-1 spaces, Linear Algebra Appl. 59 (1984), 55-77. | Zbl 0536.20044
[001] [2] L.B. Beasley and N.J. Pullman, Semiring rank versus column rank, Linear Algebra Appl. 101 (1988), 33-48. | Zbl 0642.15002
[002] [3] S.G. Hwang, S.J. Kim and S.Z. Song, Linear operators that preserve maximal column rank of Boolean matrices, Linear and Multilinear Algebra 36 (1994), 305-313. | Zbl 0804.15002
[003] [4] S. Kirkland and N. J. Pullman, Linear operators preserving invariants of nonbinary matrices, Linear and Multilinear Algebra 33 (1992), 295-300. | Zbl 0847.15006
[004] [5] S.Z. Song, Linear operators that preserve Boolean column ranks, Proc. Amer. Math. Soc. 119 (1993), 1085-1088. | Zbl 0802.15006
[005] [6] J.H.M. Wedderburn, Boolean linear associative algebra, Ann. of Math. 35 (1934), 185-194. | Zbl 0009.10002