In this paper we consider some special classes of Diophantine equations connected with McFarland's and Ma's conjectures about difference sets in abelian groups and we obtain an extension of known results.
@article{bwmeta1.element.bwnjournal-article-doi-10_7151_dmgaa_1016, author = {Zhenfu Cao and Aleksander Grytczuk}, title = {Some classes of Diophantine equations connected with McFarland's and Ma's conjectures}, journal = {Discussiones Mathematicae - General Algebra and Applications}, volume = {20}, year = {2000}, pages = {193-198}, zbl = {0979.11019}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmgaa_1016} }
Zhenfu Cao; Aleksander Grytczuk. Some classes of Diophantine equations connected with McFarland's and Ma's conjectures. Discussiones Mathematicae - General Algebra and Applications, Tome 20 (2000) pp. 193-198. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmgaa_1016/
[000] [1] K.T. Arasu, Recent results on difference sets, 'Coding Theory and Design Theory', Part II, Springer-Verlag, Berlin-New York 1990, 1-23. | Zbl 0747.05013
[001] [2] Z. Cao, Some Diophantine equations in difference sets, a lecture, '5-th National Combinatorial Mathematics Conference', Shanghai 1994.
[002] [3] Z. Cao, 'Introduction to Diophantine equations' (Chinese), Harbin Inst. of Technology Press, Harbin 1989.
[003] [4] Z. Cao, On the equation , Chinese Sci. Bull. 35 (1990), 1227-1228.
[004] [5] Z. Cao, On the Diophantine equation (Chinese), J. Harbin Inst. Tech. 23 (1991), suppl, 110-112. | Zbl 0971.11518
[005] [6] G. Degert, Über die Bestimung der Grundeinheit gewisser reell-quadratischer Zahlkörper, Abh. Math. Sem. Univ. Hamburg 22 (1958), 92-97. | Zbl 0079.05803
[006] [7] Y.-D. Guo, On the exponential Diophantine equation , Discuss. Math.- Algebra Stochastic Methods 16 (1996), 57-60.
[007] [8] S.L. Ma, McFarland's conjecture on abelian difference sets with multiplier -1, Des. Codes Cryptogr. 1 (1992), 321-332. | Zbl 0758.05028
[008] [9] L.J. Mordell, 'Diophantine Eqations', Academic Press, London 1969.
[009] [10] C. Richaud, Sur la résolution des équations x² - Ay² = ±, Atti Acad. Pontif. Nuovi Lincei, 1866, 177-182.
[010] [11] C. Strømer, Quelques theorems sur l'equation de Pell x² - Dy² = ±1 et leur applications, Skr. Norske Vid. Acad., I Selsk. Mat. Natur. Kl., No. 2 (1897), 48 pp.