Let G be a group and Kₙ = {g ∈ G: o(g) = n}. It is prowed: (i) if F = ℝ, n ≥ 4, then PSL(2,F) = Kₙ²; (ii) if F = ℚ,ℝ, n = ∞, then PSL(2,F) = Kₙ²; (iii) if F = ℝ, then PSL(2,F) = K₃³; (iv) if F = ℚ,ℝ, then PSL(2,F) = K₂³ ∪ E, E ∉ K₂³, where E denotes the unit matrix; (v) if F = ℚ, then PSL(2,F) ≠ K₃³.
@article{bwmeta1.element.bwnjournal-article-doi-10_7151_dmgaa_1013, author = {Jan Ambrosiewicz}, title = {A factorization of elements in PSL(2, F), where F = Q, R}, journal = {Discussiones Mathematicae - General Algebra and Applications}, volume = {20}, year = {2000}, pages = {159-167}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmgaa_1013} }
Jan Ambrosiewicz. A factorization of elements in PSL(2, F), where F = Q, R. Discussiones Mathematicae - General Algebra and Applications, Tome 20 (2000) pp. 159-167. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmgaa_1013/
[000] [1] J. Ambrosiewicz, On the property W for the multiplicative group of the quaternions algebra, Studia Univ. Babes-Bolyai Math. 25 (1980), no. 2, 2-3. | Zbl 0521.20017
[001] [2] J. Ambrosiewicz, The property W² for the multiplicative group of the quaternions field, Studia Univ. Babes-Bolyai Math. 29 (1984), 63-67.
[002] [3] J. Ambrosiewicz, On the square of sets of the group SL(3,F), PSL(3,F), Demonstratio Math. 18 (1985), 963-968. | Zbl 0606.20037
[003] [4] J. Ambrosiewicz, On square of sets of linear groups, Rend. Sem. Mat. Univ. Padova 75 (1986), 253-256.
[004] [5] J. Ambrosiewicz, Powers of sets in linear group, Demonstratio Math. 23 (1990), 395-403.
[005] [6] J. Ambrosiewicz, Square of set of elements of order two in orthogonal groups, Publ. Math. Debrecen 41 (1992), 189-198. | Zbl 0812.20026
[006] [7] J. Ambrosiewicz, If K is a real field then cn(PSL(2,K)) = 4, Demonstratio Math. 29 (1996), 783-785. | Zbl 0874.20030
[007] [8] E.W. Ellers, Bireflectionality in classical groups, Canad. J. Math. 29 (1977), 1157-1162. | Zbl 0371.15009
[008] [9] E.W. Ellers, R. Frank, and W. Nolte, Bireflectionality of the weak orthogonal and the weak sympletic groups, J. Algebra 88 (1984), 63-67. | Zbl 0533.20020