Boolean matrices ... neither Boolean nor matrices
Gabriele Ricci
Discussiones Mathematicae - General Algebra and Applications, Tome 20 (2000), p. 141-151 / Harvested from The Polish Digital Mathematics Library

Boolean matrices, the incidence matrices of a graph, are known not to be the (universal) matrices of a Boolean algebra. Here, we also show that their usual composition cannot make them the matrices of any algebra. Yet, later on, we "show" that it can. This seeming paradox comes from the hidden intrusion of a widespread set-theoretical (mis) definition and notation and denies its harmlessness. A minor modification of this standard definition might fix it.

Publié le : 2000-01-01
EUDML-ID : urn:eudml:doc:287705
@article{bwmeta1.element.bwnjournal-article-doi-10_7151_dmgaa_1012,
     author = {Gabriele Ricci},
     title = {Boolean matrices ... neither Boolean nor matrices},
     journal = {Discussiones Mathematicae - General Algebra and Applications},
     volume = {20},
     year = {2000},
     pages = {141-151},
     zbl = {0964.08003},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmgaa_1012}
}
Gabriele Ricci. Boolean matrices ... neither Boolean nor matrices. Discussiones Mathematicae - General Algebra and Applications, Tome 20 (2000) pp. 141-151. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmgaa_1012/

[000] [1] J. Adámek, H. Herrlich and G.E. Strecker, Abstract and Concrete Categories, John Wiley & Sons, New York 1990. | Zbl 0695.18001

[001] [2] S.L. Bloom and Z. Ésik, Matrix and iteration theories, I and II, J. Comput. System Sci. 46 (1993), 381-408 and 409-439. | Zbl 0791.08006

[002] [3] S.L. Bloom and Z. Ésik, Iteration Theories, The Equational Logic of Iterative Processes, Springer-Verlag, Berlin 1993. | Zbl 0773.03033

[003] [4] C.C. Elgot, Matricial Theories, J. Algebra 42 (1976), 391-421.

[004] [5] K. Głazek, Some old and new problems in the independence theory, Colloq. Math. 42 (1979), 127-189. | Zbl 0432.08001

[005] [6] J.R. Hindley and J.P. Seldin, Introduction to Combinators and λ-Calculus, Cambridge University Press, London 1986. | Zbl 0614.03014

[006] [7] K.-H. Kim, Boolean Matrix Theory and Applications, M. Dekker, New York 1982.

[007] [8] E.G. Manes, Algebraic Theories, Springer-Verlag, Berlin 1976.

[008] [9] J.D. Monk, Introduction to Set Theory, McGraw-Hill, New York 1969. | Zbl 0200.00066

[009] [10] G. Ricci, Universal eigenvalue equations, Pure Math. Appl., Ser. B, 3 (1992), 231-288.

[010] [11] G. Ricci, ERRATA to Universal eigenvalue equations, ibidem, 5 (1994), 241-243. | Zbl 0818.15009

[011] [12] G. Ricci, A Whitehead Generator, Quaderni del Dipartimento di Matematica 86, Universitá di Parma, Parma, 1993.

[012] [13] G. Ricci, Two isotropy properties of 'universal eigenspaces' (and a problem for DT0L rewriting systems), Contributions to General Algebra 9 (1995), 281-290. | Zbl 0884.08001

[013] [14] G. Ricci, New characterizations of universal matrices show that neural networks cannot be made algebraic, Contributions to General Algebra 10 (1998), 268-291. | Zbl 0907.08003

[014] [15] G. Ricci, Analytic monoids, to appear in the proceedings: 'Atti Convegno Strutture Geometriche, Combinatoria e loro applicazioni (Caserta Febr. 25-27, 1999)'.

[015] [16] J.H.M. Wedderburn, Boolean linear associative algebra, Ann. of Math. 35 (1934), 185-194. | Zbl 0009.10002

[016] [17] A.N. Whitehead, A Treatise on Universal Algebra with Applications, 1, Cambridge University Press, Cambridge 1898. | Zbl 29.0066.03