In the first part of this paper we prove without using the transfer or characters the equivalence of some conditions, each of which would imply p-nilpotence of a finite group G. The implication of p-nilpotence also can be deduced without the transfer or characters if the group is p-constrained. For p-constrained groups we also prove an equivalent condition so that should be p-nilpotent. We show an example that this result is not true for some non-p-constrained groups. In the second part of the paper we prove a generalization of a theorem of Itô with the help of the knowledge of the irreducible characters of the minimal non-nilpotent groups.
@article{bwmeta1.element.bwnjournal-article-doi-10_7151_dmgaa_1011, author = {Kereszt\'ely Corr\'adi and Erzs\'ebet Horv\'ath}, title = {Equivalent conditions for p-nilpotence}, journal = {Discussiones Mathematicae - General Algebra and Applications}, volume = {20}, year = {2000}, pages = {129-139}, zbl = {0977.20012}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmgaa_1011} }
Keresztély Corrádi; Erzsébet Horváth. Equivalent conditions for p-nilpotence. Discussiones Mathematicae - General Algebra and Applications, Tome 20 (2000) pp. 129-139. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmgaa_1011/
[000] [1] J.L. Alperin, Centralizers of abelian normal subgroups of p-groups, J. Algebra 1 (1964), 110-113. | Zbl 0119.02901
[001] [2] K. Corrádi, On certain properties of centralizers hereditary to the factor group, Publ. Math. (Debrecen) 37 (1990), 203-206. | Zbl 0722.20012
[002] [3] K. Corrádi and E. Horváth, Steps towards an elementary proof of Frobenius' theorem, Comm. Algebra 24 (1996), 2285-2292. | Zbl 0856.20017
[003] [4] K. Corrádi and E. Horváth, Normal π-complement theorems, Arch. Math. (Basel) 71 (1998), 262-269. | Zbl 0921.20023
[004] [5] D. Gorenstein, 'Finite groups', Chelsea Publ. Comp., New York 1980. | Zbl 0463.20012
[005] [6] B. Huppert, 'Endliche Gruppen', Springer-Verlag, Berlin 1967. | Zbl 0189.31601
[006] [7] I.M. Isaacs, 'Character theory of finite groups', Dover Publ., Inc., New York 1994. | Zbl 0849.20004
[007] [8] N. Itô, On a theorem of H.F. Blichfeldt, Nagoya Math. J. 5 (1953), 75-77.