We describe properties of subalgebras and BCC-ideals in BCC-algebras with a topology induced by a family of fuzzy sets.
@article{bwmeta1.element.bwnjournal-article-doi-10_7151_dmgaa_1007, author = {Wies\l aw A. Dudek and Young Bae and Sung Min Hong}, title = {On fuzzy topological subalgebras of BCC-algebras}, journal = {Discussiones Mathematicae - General Algebra and Applications}, volume = {20}, year = {2000}, pages = {77-86}, zbl = {0973.06016}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmgaa_1007} }
Wiesław A. Dudek; Young Bae; Sung Min Hong. On fuzzy topological subalgebras of BCC-algebras. Discussiones Mathematicae - General Algebra and Applications, Tome 20 (2000) pp. 77-86. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmgaa_1007/
[000] [1] W.A. Dudek, The number of subalgebras of finite BCC-algebras, Bull. Inst. Math. Acad. Sinica 20 (1992), 129-136. | Zbl 0770.06009
[001] [2] W.A. Dudek, On proper BCC-algebras, Bull. Inst. Math. Acad. Sinica 20 (1992), 137-150. | Zbl 0770.06010
[002] [3] W.A. Dudek and Y.B. Jun, Fuzzy BCC-ideals in BCC-algebras, Math. Montisnigri 10 (1999), 21-30. | Zbl 0951.06019
[003] [4] W.A. Dudek and X.H. Zhang, On ideals and congruences in BCC-algebras, Czechoslovak Math. J. 48 (123) (1998), 21- 29. | Zbl 0927.06013
[004] [5] D.H. Foster, Fuzzy topological groups, J. Math. Anal. Appl. 67 (1979), 549-564. | Zbl 0409.22001
[005] [6] Y. Imai and K. Iséki, On axiom system of propositional calculi XIV, Proc. Japan Acad. 42 (1966), 19-22. | Zbl 0156.24812
[006] [7] K. Iséki and S. Tanaka, An introduction to the theory of BCK-algebras, Math. Japon. 23 (1978), 1-26. | Zbl 0385.03051
[007] [8] Y. Komori, The class of BCC-algebras is not a variety, Math. Japon. 29 (1984), 391-394. | Zbl 0553.03046
[008] [9] J. Meng and Y. B. Jun, BCK-algebras, Kyungmoonsa, Seoul, Korea 1994.
[009] [10] A. Rosenfeld, Fuzzy groups, J. Math. Anal. Appl. 35 (1971), 512-517. | Zbl 0194.05501
[010] [11] A. Wroński, BCK-algebras do not form a variety, Math. Japon. 28 (1983), 211-213. | Zbl 0518.06014
[011] [12] L.A. Zadeh, Fuzzy sets, Inform. Control 8 (1965), 338-353. | Zbl 0139.24606