An elementary proof is given for Hutchinson's duality theorem, which states that if a lattice identity λ holds in all submodule lattices of modules over a ring R with unit element then so does the dual of λ.
@article{bwmeta1.element.bwnjournal-article-doi-10_7151_dmgaa_1004, author = {G\'abor Cz\'edli and G\'eza Tak\'ach}, title = {On duality of submodule lattices}, journal = {Discussiones Mathematicae - General Algebra and Applications}, volume = {20}, year = {2000}, pages = {43-49}, zbl = {0973.06008}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmgaa_1004} }
Gábor Czédli; Géza Takách. On duality of submodule lattices. Discussiones Mathematicae - General Algebra and Applications, Tome 20 (2000) pp. 43-49. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmgaa_1004/
[000] [1] G. Frobenius, Theorie der linearen Formen mit ganzen Coefficienten, J. Reine Angew. Math. 86 (1879), 146-208. | Zbl 10.0079.02
[001] [2] G. Hutchinson, On classes of lattices representable by modules, Proceedings of the University of Houston Lattice Theory Conference, Univ. Houston 1973, 69-94. | Zbl 0302.06016
[002] [3] G. Hutchinson and G. Czédli, A test for identities satisfied in submodule lattices, Algebra Universalis 8 (1978), 269-309. | Zbl 0384.06009
[003] [4] A.F. Pixley, Local Mal'cev conditions, Canadian Math. Bull. 15 (1972), 559-568. | Zbl 0254.08009
[004] [5] R. Wille, Kongruenzklassengeometrien, Lecture Notes in Math, no. 113, Springer-Verlag, Berlin-Heidelberg-New York 1970.