In this paper we introduce the class of strongly rectifiable and S-homogeneous modules. We study basic properties of these modules, of their pure and refined submodules, of Hill's modules and we also prove an extension of the second Prüfer's theorem.
@article{bwmeta1.element.bwnjournal-article-doi-10_7151_dmgaa_1001, author = {Libu\v se Teskov\'a}, title = {Strongly rectifiable and S-homogeneous modules}, journal = {Discussiones Mathematicae - General Algebra and Applications}, volume = {20}, year = {2000}, pages = {5-20}, zbl = {0965.16003}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmgaa_1001} }
Libuše Tesková. Strongly rectifiable and S-homogeneous modules. Discussiones Mathematicae - General Algebra and Applications, Tome 20 (2000) pp. 5-20. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmgaa_1001/
[000] [1] K. Benabdallah, A. Bouanane and S. Singh, On sums of uniserial modules, Rocky Mountain J. Math. 20 (1990), 15-29. | Zbl 0718.16005
[001] [2] K. Benabdallah and S. Hattab, Modules localement rectifiables et modules rectifiables preprint, Université de Montréal (1985).
[002] [3] K. Benabdallah and S. Hattab, Rectifiable modules. I, Comment. Math. Univ. St. Paul. 37 (1988), 131-143. | Zbl 0666.16016
[003] [4] L. Bican, Kulikov's criterion for modules, J. Reine Angew. Math. 288 (1976), 154-159. | Zbl 0333.16021
[004] [5] L. Bican, The structure of primary modules, Acta Univ. Carolin. Math. Phys. 17 (1976) no. 2, 3-12. | Zbl 0395.16027
[005] [6] A. Facchini and L. Salce, Uniserial modules, Comm. Algebra 18 (2) (1990), 499-517. | Zbl 0712.16008
[006] [7] T.S. Shores, Decomposition of finitely generated modules, Proc. Amer. Math. Soc. 30 (1971), 445-450. | Zbl 0203.05002
[007] [8] T.S. Shores, The structure of Loewy modules, J. Reine Angew. Math. 254 (1972), 204-220. | Zbl 0235.16024